9 Sound Synthesis

Mathematical science . . . has these divisions: arithmetic, music, geometry, astronomy. Arithmetic is the
discipline of absolute numerable quantity. Music is the discipline which treats of numbers in their relation to
those things which are found in sound. ‘

—Cassiodorus

9.1 Forms of Synthesis

Fourier synthesis can be used to create any periodic vibration (see chapter 3). But Fourier methods
are only one of an essentially limitless number of techniques that can be used to synthesize sounds.

9.1.1 Linearity and Synthesis

Linear synthesis techniques can generally be used to reproduce a sound that is identical to the orig-
inal. The Fourier transform, for example, can be used to reproduce any periodic waveform. This
is part of the reason we call it a transform: we can analyze a signal into its transformed state and
then use its inverse transform to reproduce the original. Nonlinear techniques generally provide no
way to reproduce a sound that is identical to an original, but they may have other compelling advan-
tages, such as being economical to calculate or intuitive to use.

9.1.2 Linear Synthesis

The criteria of linear systems are superposition and proportionality, described here with an empha-
sis on synthesis.

Superposition Air and water are linear media (at least for the strength of signals we are dis-
cussing) because waves superimpose without distortion. For two signals x, and x,,if F(x;) = y;
and F(x,) = ¥,, and if F(x; +x,) = ¥; +,, then function is linear (if it also meets the pro-
portionality criterion); otherwise it is nonlinear. @ C%: Cr )(

Proportionality In air and water, little waves pass through big ones, and vice versa, without being
modified by the encounter. Linear systems are independent of amplitude. If F(x; + Xy) = Y1+ Yo
and F(ax, + bx,) = ay, + by,, then function F is linear (if it also meets the superpositio
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criterion); otherwise it is not. Examples of nonlinear media include photographic film and magnetic
tape, both of which can saturate if the amplitudes of signals being recorded on them are cumulatively
too strong.

9.1.3 Overview of Linear Synthesis Types

Linear transforms are characterized by adding or subtracting weighted basis functions of some
kind. In the case of Fourier analysis and synthesis, the basis functions-are the family of sinusiods.
A non-Fourier linear synthesis technique called Walsh-Hadamard synthesis has basis functions
that are square waves. The wavelet transform (see chapter 10) has a variety of nonsinusoidal basis
functions.

We can synthesize a periodic function corresponding to an arbitrary spectrum via the inverse
Pourier transform. Cycling the resulting waveform repeatedly is equivalent to the original infinite
periodic function. This is the basic idea of waveform synthesis (see section 9.2.5).

Although the Fourier transform is mathematically valid only when applied over all time, it can
be adapted to analyze and reproduce sounds that change through time. Additive synthesis is an
extension of the Fourier transform to signals that can change over time (see figure 9.9). The tech-
nique can be implemented, for example, by driving a bank of oscillators with time domain func-
tions representing the frequencies and amplitudes of the sound’s components. Since in this case
the frequencies need not be harmonics, this technique can also generatelinharmomc spectra. The
general case of additive synthesis is discussed in chapter 10. Even a simple mixing console can be
thought of as a kind of additive synthesizer, in the sense that it superposes and scales its input sig-
nals through time. .

As the name suggests, subtractive synthesis Temoves energy from a spectrum by filtering. Like
additive synthesis, it can be applied to signals that change through time. Subtractive synthesis is
discussed under linear predictive coding (LPC) (see section 9.5.2).

The advantage of linear synthesis systems is that, since they are based on a transform, we can
use them to both analyze and reproduce a sound. But this is generally not a musically interesting
thing to do—why not just use the original sound? For musical applications, we generally wish to
create effects not otherwise obtainable. We can manipulate the analysis data of linear systems to
achieve some very interesting effects, and doing so is usually fairly intuitive because linear tech-
niques involve only superposition and proportionality. ,

The liability of many linear synthesis systems is that the amount of analysis data can be daunt-
ingly large, requiring huge amounts of calculation or data storage or both in order to produce
realistic-sounding synthesis. Nonlinear techniques typically are much more economical, but they
are also less general.

9.1.4 Nonlinear Synthesis Types

Any technigue that does not meet the superposition and proportionality criteria is a nonlinear tech-
nique. This book covers only a small fraction of the amazing variety of such techniques, but it hits
many of the high points.
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The primary limitation of nonlinear synthesis techniques is that they have no inverse transform,
so there is nio way to use them to exactly reproduce an original sound. Although no direct analysis
is possible, that doesn’t mean we can’t predict the kinds of sounds we’ll get from a nonlinear tech-
nique; we just won’t necessarily be able to produce a particular sound exactly. It may not be possible
for a nonlinear technique to produce a particular type of sound regardless of the parameters used.

Nonlinear systems are generally more computationally efficient than linear synthesis forms.
Some, such as frequency modulation, model instrumental timbres very well with few parameters
and little computation.

A central element of many nonlinear techniques is modulation, which is just a latinate word
meaning change. In sound synthesis, it has the particular meaning of applying a time-varying
change to a signal.

The aspects of signals that are exploited by nonlinear synthesis include

« Amplitude, where, for example, a signal is saturated or clipped, or where there is uneven ampli-
tude response to different frequencies (filtering).

s Frequency, where new frequencies are produced in response to an input signal.

« Phase, where the phase of the output signal is not a linear function of the input phase.

Musically, many nonlinear synthesis systems have a quixotic character that can sometimes be
counterintuitive, whereas linear systems tend to offer fewer surprises. Since composition is the art
of controlled expectation, nonlinear techniques are very usefulin the composer’s tool kit. However,
they are not a panacea. If overused, the inner structure of nonlinear techniques can become horribly
clichéd.

9.2 A Graphical Patch Language for Synthesis

It is worthwhile to have a way to construct sound-generating modules to illustrate the synthesis
techniques. We need three elements: a way to keep time, a way to pass signals around, and a way
to transform signals.
Here’s a clock that produces a monotonically increasing value cor-
responding to the flow of time.We need a way to observe the output of
the clock. The function plotter shown here takes two input signals: the
x input moves a pen horizontally, and the y input moves the pen
vertically.

Connecting the clock to both inputs of the plotter produces a diagonal
line. Since the clock’s values are applied to both inputs, itmoves the pen
an equal distance vertically and horizontally through time, producing a
ramp at a 45° angle (the identity function).
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‘We need a way to transform inputs to create outputs. The sine wave £
oscillator shown here implements the function A sin27ft. The inputs |, Csin(2n] ﬂ])

on the left side, A, f, and ¢, are connected to the indicated terms of the
formula. The output appears at the right side and can be the input to
another module.

If we wire the sine wave oscillator with the clock and plotter, and supply parameters for A, £, and
t, we have the setup shown in figure 9.1. Note that the amplitude input is associated with variable
A and fréquency with variable f. If left unspecified, these variables indicate parameters we can set
any way we like, to obtain, in this case, any desired amplitude and frequency. If an input should
receive a particular value, it will be shown associated with a constant.

Let’s call a configuration of such modules a patch. This patch scales time t by 2zf. The sine of
the result is then scaled by A. The time value is also applied to the plotter and moves the pen hor-
izontally. The value of the sine result drives the pen vertically.

In order to represent increasingly complex modules, we can use the standard rules of mathe-
matical equality to define new functions to encapsulate existing definitions. Taking the oscillator,
for example, if we let

m - g(t) = Asin2nft,

we could interpret t\his graphically as shown in figure 9.2.

These diagrams can at times get cluttered with many lines connecting modules, so I occa-
sionally use variables to temporarily hold a value produced in one part of a patch for reuse else-
where. For example, the oscillator patch could have been drawn as in figure 9.3. The clock sets
the value of the variable ¢, and ¢ is referenced by other module inputs. Here, the variable ¢ holds
the output of the clock, and the inputs to the oscillator and plotter reference its value whenever
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Figure 9.2
Encapsulating patches.
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Figure 9.3
Patch using variables instead of interconnections.

Figure 9.4
Envelope curves.

they need an input. This comes in so han

I want to imply the clock signal.

9.2.1 Constructing a Simple Synthesis Instrument

This simple graphical
synthesis and processing techniques.
over amplitude and frequency,
a particular frequency,

Simple Envelope Generator Let’s invent
attack, variable-length steady state, and exponen
duration, the attack time, and the
exponential curve that g
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(figure 9.4).
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We can scale the function to an arbitrary time length by redefining the envelope function to be

N\n
y=EGdm=(1)",

where d is the duration in seconds.

If we use one envelope function E,(z, dy, ny) for the attack and concatenate another,
E(t, dy, n,), toits end for the decay, we can use it, for example, to vary the instantaneous ampli-
tude of an oscillator, creating the amplitude envelope shown in equation (9.2):

Envelope Kernel O.D

l/n1
t<a, (t/a)

env(a, ny, d, ny, t) = ’ Simple Envelope Generator 0.2

>

1/,
t2a, 1L.O-[(z-a)/d]

where ¢ is time, a is the atta'ék time, d is the release time, and each n determines the steepness of its
part of the envelope curve, with ny controlling the curve of the attack and n, conirolling the curve of
the decay. The higher the value of n, the more quickly the function chan ges. For example, figure 9.5
shows a function with attack time a = 0.1 s, release time d = 0.6s,n =2, and ny,=1.5. Putting
it all together, we can coristruct a simple tone generator with an amplitude envelope, as shown
in figure 9.6 where the module env( ) is as defined in 9.2)..
In order to‘realize a tonewith this setup, we assign values to the variables and start the clock run-
ning at t= 0. For example, setting envelope values to those in the previous paragraph, and setting
f=32HzandA =1 produces the waveform shown in the figure 9.7.1

Controlling. Frequenqy Ifwe ‘make’the: system of representing pitch flexible enough, we can use
this simple instrument to study the scale systems described in volurme 1, chapter 3.
For equal-tempered pitches, recall volume 1, equation (3.4), repeated here:

Fiy=fp- 2000/ 12,

ny =2 ny=15
E
£
|
1.
a=0.1 d=0.6
Time

Figure 9.5
Simple envelope generator function.
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Figure 9.6
Simaple synthesis instrument with amplitude envelope.

Time

Tigure 9.7
Tone produced by the synthesis instrument.

where k is an integer signifying one of the 12 pitch classes numbered 0 to 11, R is the reference
frequency, such as A440, and v is the desired octave. If we construct symbols for each chromatic
pitch, such as Cid = f(1,4), we can set the frequency parameter f = C# to achieve that pitch in the
simple instrument shown in figure 9.6.

We can approach just intonation along the lines worked out at the end of volume 1, section 3.8.
Recall volume 1, equation (3.11), reproduced here:

16

10 v-4
27 ’

C(v)=R- 2
We constructed a set of symbols such as F (v)= C,(v)-4/3, which provides the “gthagorean”
pitch F, in any octave V. We can set the frequency parameter f = F (v) to achieve Pythagorean
pitch Fin octave v using the simple synthesis instrument. We can also use the more elaborate
constructions for pitch in MUSIMAT (see volume 1, appendix sections B.1 and B.2).

Adding Vibrato Vibrato is a periodic pitch modulation around a target pitch. Depending upon
the instrument, the vibrato rate for musical instruments typically ranges from 1 to 7 Hz, and
vibrato depth ranges from about one tenth of a semitone (100 cents) up to 2 maximum of about a
minor third (think: Wagnerian soprano). Perhaps the simplest way to model vibrato is just to add
the output of a slowly time-varying oscillator to the frequency parameter, and use the result as the
frequency input of the oscillator generating the waveform. Call the oscillator that generates the
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Figure 9.8
Synthesis instrument with vibrato and amplitude envelope.

waveform the carrier oscillator; and the oscillator that modulates the target frequency the mody-
lating oscillator. The calculation for the frequency f, of the carrier oscillator is

fe = f+ AF- sin2xf,t, o Vibrato (9.3)

where f is the target frequency, Af is the vibrato depth, and f,, is the vibrato rate. Clearly, if
Af = 0, thereis no vibrato, and the carrier frequency is just the target frequency . But if Af 0,
the carrier frequency will rise and fall at the rate of J The patch with vibrato added is shown
in figure 9.8. o

What value do we assign to Af in order to achieve a desired depth of modulation? Recalling that
pitch is logarithmic in frequency, if we want the vibrato depth to be a constant interval, such as a
semitone, then Af must grow with increasing pitch. Recall from volume 1, section 3.2.2, that the
size of a tempered semitone ratio is about 1.06. That s, for some frequency f,, the pitch f,, , a semi-
tone aboveis f,,, =1.06 - f,.If we set Af = 1.06 - f, where fis the target frequency, we actually
get a vibrato depth of a whole tone, because the range of the sine function is 1.0, which provides
arange of a semitone above and below the target pitch. So instead we set Af = 0.53 - fto geta
semitone of vibrato depth.

Of course, performers don’t produce exactly sinusoidal vibrato. An improvement is to introduce
some randomness into the vibrato to achieve a more naturalistic effect. This subject begins to verge

into modeling of musical instrument performance. It’s an enormous subject; I investigate just the
basics. ‘

9.2.2 Static Control over Timbre

With figure 9.8 we have achieved a synthesis instrument that has control over pitch, duration,
amplitude, amplitude envelope, and vibrato. But its timbre is a simple sinusoid. In order to improve
this, we turn now to ways of synthesizing timbre. 3

Timbre is actually the subject of key interest in synthesis because it largely determines the per-
ceived quality of the synthetic tone. Musicians often have contradictory aims for timbre. On the




Chapter 9

£
b

t frequency the modu-
tor is

Vibrato (9.3)

brato rate. Clearly, if
uency f. Butif Af #0,
ibrato added is shown

ulation? Recalling that

tant interval, such as a -

, section 3.2.2, that the
. thepitch £, asemi-
frequency, we actually
s 1.0, which provides

Af =053 -ftogeta

yvement is to introduce
subject begins to verge
:t; I investigate just the

1 over pitch, duration,
»id. In order to improve

ely determines the per-
ims for timbre. On the

amplitudes and frequencies of each oscillator can be any value whatever: we are not constrained

Sound Synthesis 371

AD .
; sin(2rI0Y)

Y o |
£ sin(2re 1Y)
ij

Figure 9.9 .
Additive synthesis.

one hand, having the most naturalistic possible sound is the goal of those who want to model stan-
dard acoustic instruments like pianos and clarinets. For orchestral composers, for example, this
provides an inexpensive means to test out musical ideas. Unfortunately, realism in music synthesis
is a kind of holy grail, often sought, seldom achieved.

On the other hand, sound synthesis can be used to extend the palette of timbres available to musi-
cians beyond what can be produced by conventional instruments. Synthesis can create sounds that
metamorphose from the familiar to the extraordinary. For example, linear predictive coding (LPC)
synthesis can create hybrid sounds such as a talking flute. Synthesis can create unearthly sounds,
such as the Shepard scale illusion (see volume 1, section 6.4.7).

A straightforward way to control timbre is to specify the spectrum of a sound by controlling the
amplitudes and frequencies of a bank of oscillators, as in figure 9.9.

We could express this mathematically as follows:

13, .
flr) = IBZAnsmmrfnt,

n=1

Oscillator Bank Synthesis 9.4)

where N is the number of components, starting with the fundamental. Their amplitudes and fre-
quencies are given by vectors A, and f,, respectively, each of length N.2 The sum of the amplitudes
4, is usually normalized so that the amplitude of f{7) does not vary with the number and strengths
of the components. This is done by setting

p=3A,

Oscillator bank synthesis is a generalization of Fourier synthesis (see section 3.1. 1) because the
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to harmonic spectra and periodic waveforms. However, the spectra specified by A, and S, are
static. Not many musical instruments produce entirely static spectra, so let’s extend this to hand]e
dynamic amplitudes and frequencies that can change through time.

9.2.3 Dynamic Oscillator Bank Synthesis

Dynamic frequency control allows realistic synthesis of music instrument tones, glissandos, ang
vibrato. Dynamic amplitude allows us to trace the spectral evolution of tones. All we have to do
is make the amplitudes and frequencies of the spectral components be functions of time as we]]
so that we have an array of amplitude functions A (f) and frequency functions £,(2), as shown in
equation (9.5).3

N
1) = 2 A, (t)sin[27f, (1) - 1]. Dynamic Oscillator Bank Synthesis (9.5)
n=1

Normalization, as in equation 9.4, can be added if desired.

9.24 Advantages and Disadvantages

There are two primary disadvantages. of dscillator synthesis. First, many oscillators are typically
required to synthesize a realistic sound. A single piano tone might have 30 harmonics containing
significant energy. Muitiply that by five fingers on both hands, and the number of oscillators
required jumps to 300. If the damper pedal is held down, the number of oscillators would be in the
thousands.

Second, this approach requires that the amplitudes and frequencies of each spectral component
be specified in detail. Furthermore, if the frequencies and amplitudes of the components change
through time, as is true with natural musical instruments, the amount of data required to control
the oscillators can be many times greater than the resulting signal .4

However, this is the most general way of synthesizing sound. Since summation is linear, oscil-
lator bank synthesis can be driven by Fourier analysis, producing sounds that have a dazzlingly
realistic quality. Not only can we synthesize any sound we can analyze, we can also synthesize any
sound at all, limited only by our ability to dream it up. In fact, the combination of a fast enough
computer, a loudspeaker, and additive synthesis is perhaps the most general-purpose musical
instrument ever created.

But too much generality can be paralyzing. If, for instance, a composer must make every deci-
sion atevery level, the task can become overwhelming. Therefore, generally, the goal of sound syn-
thesis is to generate sounds that are expressive without requiring extreme micromanagement to
produce interesting results.

9.2.5 Waveform Synthesis

Waveform synthesis preserves some of the generality of oscillator bank synthesis at significantly
less cost in complexity because the amplitudes and frequencies of the components are constants
instead of functions of time. It can be expressed as follows:




Chapter 9

and f, are
; to handle

andos, and
have to do
me as well
18 shown in

thesis (9.5)

are typically
s containing
f oscillators
yuld be in the

1l component
nents change
-ed to control

 linear, oscil-
: a dazzlingly
ynthesize arny
a fast enough
‘pose musical

ke every deci-
| of sound syn-
janagement 10

at signiﬁcantly
-g are constants .

Sound Synthesis

N
y(@) = D A, sin2znft, Waveform Synthesis (9.6)
n=1

ANk

where A, is an array of component amplitudes of length N. This technique is essentially identical
to Fourier synthesis (see section 3.1.1) using oscillators, but it is less general than dynamic oscil-
lator bank synthesis (section 9.2.3) because it is limited to harmonic spectra and periodic signals.
The sum of the amplitudes A, should be normalized if the amplitude of the output should not vary
with the number and strengths of the components by setting

p= EAnf

A discrete version of equation (9.6) known as wavetable synthesis works well within the hardware
and software constraints of typical modern computer systems, and it is widely used to synthesize
sound (see section 9.2.8).

92.6 Fourier Series Waveforms

Generalizing equation (9.6) to include all possible real harmonic waveforms, we have

flty = Zakcos (27kt) + bysin(27kt), 'Real Fourier Series (9.7)
k=0

where coefficients a, and by scale the cosinusoidal and sinusoidal contributions, respectively,
of harmonic k. Equation (9.7) does not have the frequency parameter f appearing in equation
(9.6) because here we want to focus only on wave shape without concerning ourselves about
frequency. We can always add frequency back in to realize the specified wave shape at a par-
ticular desired frequency. Term g, scales any energy at 0 Hz because cos k = 1 when k= 0.
(b, makes no contribution at 0 Hz because sin k =0 when & = 0.) The complex form of the

Fourier series is

() = Z(ak+ibk)ei2ﬂkt. Complex Fourier Series (9.8)
k=0

The behavior of this equation might be a little surprising. For instance, if we set all a, and b, to
zero except a, = 1, equation (9.8) reduces to

ei27 = cos 27t +isin 27t,
while equation (9.7) reduces to just (cos2mt) +0.
927 Geometrical Waveforms

Some interesting specimens among the family of wave shapes are implied by equations (9.7)
and (9.8). Following are some well-known shapes.




Figure 9.10
Square wave, Fourier series.

Square Waves If we only sum odd-

numbered sine-phase harmonics and arrange their amplitudes
to be odd reciprocals,

N-1
A = Zﬁsm[Zn@kﬁ—l)-t], N>0,

Square Wave, Fourier Series (9.9)
k=0

then the series converges as N — oo

to a square wave. The series expansion of the first few terms
of (9.9) is

f() = sin2m+-31-sin27r3t+%sin27r5t+%sin27r7t+- SR

The first few waveforms in this sequence (k=0, 1, and 2) are demonstrated in figure 9.10a. When
N =1, equation (9.9) produces a sine wave, and for N > 1, it produces the sum of a sine wave and

odd harmonics. The following table shows the harmonics produced and their amplitudes for the
first few values of k.

k 0 1 2 3 4 5 6 7 8
Amplitude 1 1/3 1/5 1/7 1/9 1/11 1/13 1715 1/17
Frequency DC 3 5 7 9 11 13 15 17

The spectrum of the Square wave contains components that are odd harmonics of the fundamental.
The amplitudes diminish with increasing harmonic number. In figure 9.10, note the sli ght overshoot
and ringing that occurs at the ends of the vertical excursion of the waveforms. The effect, called
the Gibbs phenomenon (or more colorfully, Gibbs’ horns), is shown magnified in figure 9.10b.
The horns indicate that Fourier series functions only approximate the discontinuous points of the
non-band-limited square wave function defined in equation (9.10).5

The geometric square wave, also called the non-band-limited square wave, can be expressed as

f(t):{l, O<t<m,

Square Wave, Non-Band-Limited (9.10)
-1, TSi<2r,




‘When
ve and
for the

mental.
arshoot
. called

9.10b.
5 of the

ssedas -

(9.10)

Sound Synthesis

Amplitude

Tigure 9.11
Non-band-limited square wave.
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Figure 9.12
Triangular wave Fourier series.

as shown in figure 9.11. This is the same as equation (9.9) with N = o, s0iit has an infinite number .
of odd harmonics.

The non-band-limited square wave takes on only two states through time: ~1 and +1; itis binary
and discontinuous. This function has two discontinuities per period, where it transits instanta-
neously from above to below and vice versa.

The Walsh-Hadamard transform uses rectangular waves as its basis functions instead of using
sinusoids or phasors (see appendix section A.7).

Triangular Waves By summing odd-numbered cosine harmonics and arranging their ampli-
tudes to be squared odd reciprocals,

N-1
flty = 2 E—Zk—}l_—l—)acos[Zﬂ( 2k+1)-1], N>0, Triangular Wave, Fourier Series (9.11)

the series converges as N — oo to a triangular wave, as demonstrated in figure 9.12. The series
expansion of the first few terms of equation (9.11) is

1 1
t — ——
f = COSQTCZ‘+9COS27'53t+25C0827C51+49C082ﬂ'7t+

The following table shows the harmonics and amplitudes for the first few values of .

k 1 2 3 4 5 6 7 8
Amplitude 1/9 1725 1/49 1/81 1/121 1/169 1/225 1/289
Frequency 3 5 7 9 11 13 15 17
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Sawtooth wave Fourier series.

The spectrum of the triangular wave contains components that are odd harmonics of the fun-
damental. The amplitudes diminish with the square of increasing harmonic number. Most of the
energy in this signal is in the lowest harmonics.

The geometric triangular wave can be expressed as

f( =10~ h;n”_l Triangular Wave, Non-Band-Limited (9.12)

The Fourier series convergence of the triangular wave is shown in figure 9.12.

Sawtooth Waves The sawtooth wave is created by summing all odd harmonics and subtracting
all even harmonics, with amplitudes as the reciprocal of the harmonic number:

N1k A
y(t) = Z ulz— sin2zkt, N>0, Sawtooth Wave, Fourier Series (9.13)

The series converges as N — oo to a sawtooth wave, as demonstrated in figure 9.13. The series
expansion of the first few terms of equation (9.13) is

£(f) = sin2mt— %SinZﬁZt + %sinZﬂ:St— L—llsin27z4t o

The geometric sawtooth wave can be expressed as

t, 0Lt<m,

Sawtoot - -Limi 14
oo r<i<Om awtooth Wave, Non-Band-Limited (9.14)

y(1) =
Sum of Cosines Waves Summing equal-amplitude cosine harmonics,

N
1t) = ]‘1\‘[2 cos2mkt, N>0, Sum of Cosines (9.15)
k=1

the series converges as N — ooto an impulse train 51gna1 The series expansion of the first few terms
of equation (9.15) is

f®)

= ]%f(cos(Zm) + cos(272t) + cos(27w3t) + ---
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Figure 9.14
Sum of cosines converges to an impulse train signal.

Figure 9.14 shows the sum of cosines for N = {2,4,16,32%}.
In the limit, as N — oo, the sum of cosines converges to an impulse train function:

1 1-cos2nk

f(1) = 5 m, Sum of Cosines, Closed Form (9.16)

The complex form of the sum of cosines—I suppose we should call it the sum of phasors—is
the same as equation (9.15) with a phasor instead of a cosine:

N .
ft) = ]%]z 2, Sum ofPhqsors 9.17)
k=1
Here is its closed form:

12
Sum of Phasors, Closed Form (9.18)

1
0= 5
N 1_eznrk/N

As N grows, the sum of phasors becomes the complex hélix form shown in figure 9.15.

A Note about Non-Band-Limited Signals The geometric forms of the equations for all these
waveforms exist only in the limit when N — oo ; therefore they have infinite bandwidth. All
the preceding geometrical waveforms (except for the sum of cosines) decrease in amplitude (the
triangular wave the most quickly) with increasing harmonic number k and eventually become
insignificant. However, when synthesizing geometric waveforms in a sampled system such as
a computer, one should use the Fourier summations, being careful to adjust the limit of sum-
mation N to prevent the highest harmonic from exceeding the Nyquist frequency if aliasing is
not desired.

9.2.8 Wavetable Synthesis

The limitations of waveform synthesis are the same as for the Fourier transform: the waveform
must be periodic, and the resulting spectrum must be harmonic. But a variant of this approach pro-
vides a very efficient way to synthesize an arbitrary harmonic spectrum on a computer.
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Figure 9.15
Sum of phasors.

Equation (9.6) is written in terms of continuous time 7. To synthesize sound using this equation
would require either an analog electronic synthesizer or an analo g computer because they operate
in continuous time. To adapt this approach to a digital computer coupled to a DAC, we must sample
this continuous-time function by defining a sampling interval T (see section 1.4). Then defining
t= xT, the discrete version of equation (9.6) is

N ‘
y(x) =Y A,sin27nfxT,

n=1

Discrete Waveform Synthesis (9.19)

where x is the sample index, fis the fundamental frequency, T' is sample period and  is the har-
monic number.

Creating a Wavetable Since every period of equation (9.19) is the same, we can drastically
reduce the amount of computation required to generate it by precomputing one period of the
desired waveform and storing it in a table. We then iteratively read out the precomputed sample
values from the table in real time to generate the sound. The only real-time computation needed
is amplitude scaling and a small amount of arithmetic to determine the order in which to ertract

the samples from the table. To capture just one period of the waveform requires a modification
of equation (9.19):

N
. s
7, = ZAnsm27mZ_

n=1

Wavetable Synthesis (9.20)
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Figure 9.16
Sampled wave table.

-

s=((s+As))y
|

Figure 9.17
Table-lookup oscillator.

Here, 7, represents a table of length L, indexed by s, that holds one period of the sampled wave-
form. The amplitudes of the desired harmonic components are given by the array A, of length N.
Figure 9.16 shows a sampled wavetable, given 4, = {1,1/3,1/5}, N=3,and L = 32.

Indexing a Wavetable Having constructed a wavetable, we must now develop a means to extract
values from it at a rate that will produce a desired synthesis frequency. Suppose the table stores one
waveform period composed of L= 1024 samples. We must develop a computer program that will read
the samples out of the table in any order we specify, one sample at a time. The samples are then con-
verted through a DAC and sent to a loudspeaker. If we read out samples at a rate of R = 8192 samples
per second, looping back to the beginning of the table when we run off the end, the frequency we’d
output is f = R/L = 8 Hz. Figure 9.17 shows a simple two-step procedure that performs this operation.

This procedure first outputs the sample of table 7 indexed by s to the DAC, then increments s by
an amount As, then repeats these steps. The variable s is the index, and As is the increment. The index
corresponds to the instantaneous phase of the oscillator, and As corresponds to the instantaneous fre-
quency. In the example under discussion, As = 1. When sis incremented past the end of the table such
that s> L, then the modulus operator applies, and s is reset back into the range of the table. (The
expression ((g)), means the remainder after integer division of ¢ by p. See appendix section A.5.)

If we set As = 2 so that we skip every other sample, we’d run through the table twice as fast,
and the frequency would double. Thus, for some sample rate R and table length L, the formula for
the frequency fis

= AR
f= AT (9.21)
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In this example we’re limited to frequencies that are multiples of 8 Hz so long as As must be ap
integer. But if As is a real variable, we could theoretically generate any frequency. For example,
if we set As = 1.5, equation (9.21) indicates we’d be able to generate a frequency of 12 Hz. Byt
remember that the wavetable 7 is justalistof samples, and there is nothing between them to index,

unless we make up rules to define how to interpret the space between sample values. Here are some
common choices for how to ascribe meaning to the space between samples.

Trunecation Choose the nearest sampled value toward 0. For example, if s = 3.7, we throw away the
0.7 and choose sample 3. Truncation is performed with the floor operator, [x ], which returns the largest
integer not larger than x. So, for example, | 3.7 ] = 3. Since truncation simply discards the fractiona]
part of the index, the index it produces can be off by nearly an entire sample. For example, if s =3.999,
truncation still indexes sample 3, although sample 4 might be a better choice in this case.

Rounding We can improve on truncation by performing rounding on the index before selecting
the sample. For example, if As = 3.7, then because its fractional part 0.7 > 0.5 we round up,
choosing sample 4. We can express rounding as follows:

x-1x]<0.5, Lx],
x-1x]>0.5, Lx]+1,

X =

which sets x to | x | if its fractional part is less than 0.5 and otherwise to | x J+1.

Linear Interpolation Another approach is to assume that a straight line Joins adjacent sample
points and to select a point on this line that is proportional to the fractional part of the index.
For example, suppose we arbitrarily select two samples from a series: Yiu = 3.2, and
Y15 = 4.5. Say the real index is s = 14.7. Draw a ramp connecting adjacent samples, as shown in
figure 9.18, and measure off a distance between the samples corresponding to the size of the frac-
tional part of the index, then measure the distance from the ramp to the x-axis at that point. In this
example, the interpolated result would be y=0Ty,+ (1~

0.7)y;5 = 4.11. In general, we pro-
ceed in two steps:

Stepl. o=5-|s].

Step 2. y = o‘y[_s_l_’-l_GyLs-H_l.

Y1s

Figure 9.18
Linear interpolation.
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Either truncation or rounding can be used effectively to traverse continuous and noncontinuous
functions alike because only the actual samples are indexed. Truncation is computationally the
simplest approach, rounding is slightly more complicated, and linear interpolation is most com-
plex. Truncation can produce results that err by almost an entire sample, whereas rounding can err
by at most half a sample. The error introduced by linear interpolation depends upon the precision
of the available arithmetic, but it generally produces an error far less than the other two if indeed
the underlying function is at least approximately linear between samples.

Indigital audio, truncation and rounding errors appear as akind of phase Jitter because the signal
is misindexed slightly by the error. It’s as though the indexed region of the waveform is shoved
forward or backward in time by the size of the truncation or rounding error. Phase jitter is a kind
of frequency modulation, so it introduces distortion into the signal. For the truncating oscillator,
truncation etror can be reduced by increasing the number of samples of the underlying waveform.
Linear interpolation also introduces some error because rarely will a linearly interpolated value
agree exactly with the actual value of the underlying function; however, the error will generally
be less than for truncation or rounding. :

Spectrally, linear interpolation is equivalent to a second-order lowpass filter with a triangular
impulse response. Take another look at figure 4.4, which shows that the convolution of two rect-
angular functions is a triangular function. The Fourier transform of the triangular impulse response
is the sinc-squared function (see figure 4.36).

The main lobe of the sinc-squared function contains the spectral bandwidth of the original sig-
nal. It progressively filters out high-frequency components. The first null in the function occurs at
half the sampling rate, so it behaves like a rather poor-quality anti-aliasing filter. The side Iobes
of the sinc-squared function contain attenuated copies of the original spectral bandwidth and cause
aliasing (Smith 2004). The frequency response of linear interpolation is not ideal for at least two
reasons. The spectrum is progressively lowpass-filtered near half the sampling rate and is nowhere
flat, and aliasing contributed by the first side lobe is down only about 26 dB.

But that’s not all. Linear interpolation is commonly used to obtain a fractional delay copy of a
signal, for example, to stretch or compress a segment of audio in time. If the point of interpolation
sits right on top of a source sample, no spectral change is introduced by the linear interpolation,
and the frequency response is allpass. But if the interpolation point is halfway between two sam-
ples, the source is lowpass-filtered (by averaging) and suffers distortion from aliasing. If the inter-
polation point changes through time, which it typically does, linear interpolation introduces an
objectionable variable filtering effect. "

Additionally, linear interpolation only works if the underlying function from which the samples
were derived was smoothly continiious before it was sampled; then interpolation may produce a
reasonable approximation of what the function might have been between samples. Otherwise, the
result is just a guess. '

None of these techniques is ideal, and each introduces some distortion. But they are com-
putationally quite efficient and are widely used. The method of band-limited interpolation
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(see section 10.2.7) generally yields the highest-quality results, though at greater computa-
tional cost.

9.2.9 Table Lookup Oscillator

To construct a table lookup oscillator, we want to choose a sample from table 7 as defined in equa-
tion (9.20) indexed by s and then advance by As samples and repeat, starting over when we fa]]
off the end of the table. Both the index s and increment As are real-valued variables, allowing us

to progress through 7, at an arbitrary rate. For simplicity, we’ll truncate s to index each sample
we output.

Oscillator with Constant Amplitude and Frequency The result will be a waveform with a
constant amplitude and frequency. The wave produced depends on the contents of the wavetable
7. For each sample n, we perform the following steps:

Step 1. Y, = ATLXJ’

Step 2. 5 = ((s + As)),. ‘
P25 =((s % Static Table Lookup Oscillator Procedure (9.22)
Step3.n=n+1.

Step 4. Repeat.

¥, 18 the array of output samples, A is amplitude, L is the length of the table, the notation [x]is
the floor function, and the notation ((x)), means the value of x modulo L.

1. We start by outputting the currently indexed value: y, = A7 ;). The output sample Y, 18
the table value 7 indexed by the floor of the integer table lookup index s and scaled by the
amplitude A. ‘

2. Next, we determine which table value to index next time around: 5 = ((s + As)) - The next

table index s is obtained by adding the current table index and the increment As, modulo the length
of the table L.

3. Finally, we advance to the next sample time, 7= n + 1, then repeat the calculation for as many
output samples as required.

The increment As determines the rate at which we progress through the table, and hence the fic-
quency f of the oscillator. Suppose we have some fixed value of As. If we increase the sampling
rate Rholding As constant, the frequency goes up. And if we increase the length of the table Z. hold-
ing As constant, the frequency goes down. Since 7 holds exactly one period of the waveform, the
length L of the table corresponds to 27 radians. Thinking along these lines, we see that the incre-
ment As corresponds to the frequency f:

L

As = f R Oscillator Increment and Frequency (9.23)
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Thus, to achieve a frequency f= 8 with a table length L = 1024 and sample rate R = 8192, we
set As = 1.

Oscillator with Variable Amplitude and Frequency In order to be musically useful, we must
allow the oscillator’s instantaneous frequency to change through time, for instance, to let the pitch
glide up and down over time. The simplest way to accommodate this is to have an array of incre-
ments, As,, one for every output sample 7, representing a sequence of instantaneous frequencies
we wish to synthesize. For ‘every sample we output, we determine the next table value 7, to pick
by taking the current table index s, and adding the current increment As,, toit. The array of incre-
ments As,, allows us to vary frequency through time. Let’s also have an array of amplitudes A,
so that amplitude can vary per sample as well. A procedure that takes these requirements into
account is as follows (Mathews 1969):

Step 1.y, = ATLan.

Step 2. 5,11 = ((s, +As,)),. Table Lookup Oscillator Procedure (9.24)
Step3.n=n+1

Step 4. Repeat.

- The steps are as before except that potentially we have a different table index s, and increment
As, oneach sample , and a different amplitude A, on each sample. (Isay “potentially” because,
of course, we could set all the A, and As, the same, in which case this would revert to the static
oscillator.)

1. We start by outputting the currently indexed value: y, = A7), |. The nth output of the oscil-
lator is formed from the product of the nth amplitude value times the sample indexed by the floor
of the nth index value.

2. Next we compute the index of the subsequent output. s, ,; = ((s, + As,)), . The next index
is obtained by adding the current index and increment, modulo the length of the table.

3. We advance to the next moment, then repeat the calculation: n=n + 1.
The instantaneous increment As,, corresponds to the instantaneous frequency f,,:

As, = n%. Instantaneous Oscillator Increment and Frequency (9.25)

‘We can model the operation of the truncating table lookup oscillator as shown in figure 9.19. For
each sample 7, the current frequency f, is multiplied by L/R to create As,. Then As, is added
to the previous value of s, to make the next real index value. We then take the modulus of the real

index, producing the new s,. We take the floor of s, to give us an integer index that we can use to
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Figure 9.19
Truncating lookup oscillator patch.

select one sample from the wavetable 7. Finally, the result from the table is scaled by the current
amplitude A, . '

9.3 Amplitude Modulation

Amplitude modulation (AM) varies the instantaneous amplitude of a signal, usually in a periodic
. manner. Figure 9.20 shows a sinusoid with a periodically varying instantaneous amplitude and a
constant frequency.

Consider the patch shown in figure 9.21. The output of the first cosine wave oscillator, the
modulating oscillator, is connected to the amplitude input of the second, the carrier oscillator.6
In this way, the amplitude of the carrier oscillator is dynamically controlled by the modulating
oscillator. I've chosen to use cosines here because it will help later with the mathematics, but
sine waves would have done just as well in practice. In this example, the frequency of the mod-
ulating oscillator is f,,, and the frequency of the carrier is f.. The amplitude input of the modulating
oscillator is 7, which stands for modulation index. Note that a constant value of 1.0 is added to
the output of the modulating oscillator before it is fed into the carrier oscillator’s amplitude
input.

Writing out the equation for this patch, we have

f(t) = (1.0 +[cos2nf, t)ycos2rf,t .
Simplify by letting @, = 2nf,, and @, = 27f, :

f(#) = (1.0 +Icos ,t)cos w,t.
_— Amplitude Modulation with Carrier in Output (9.26)

M C

The terms labeled M correspond to the modulator, and the terms labeled C to the carrier. The for-
mula essentially multiplies M and C terms to create the amplitude-modulated signal (7).

Note that when 7 = 0, the M term equals 1.0 and drops out, so the equation reduces to
J(#) = cosw,t, a simple sinusoid at the carrier frequency.
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Figure 9.20
Amplitude modulation, carrier present in the output.
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Figure 9.21
Amplitude modulation.
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Icosm,t . 1.0 +Icoswm, ¢t

Figure 9.22
Graphical view of the M term.

When I # 0, the M term essentially plots a cosine wave at frequency ®,, and adds 1.0 to every point.
The effect is shown in figure 9.22 for a single period of the modulating cosine wave with I = 1.0.
Figure 9.22a shows the term I cos @,,t and figure 9.22b shows the constant function 1.0. When
summed in 9.22¢, they form the M term.

Note that since /=1, in this example the value of the function in figure 9.22¢ ranges from a max-
imum of 2 to a minimum of 0. This function is then multiplied by the carrier term C in equation (9.26).
When the M term’s value is momentarily 0, it nullifies the carrier signal, and when itis atits maximum
value of 2, it doubles the amplitude of the carrier signal. In between, the amplitude of the carrier fol-
lows the contour of the cosine wave as determined by the M term. If we restrict the range of the index
to 0 <7< 1.0, the result of the M term is always greater than or equal to 0, as shown in figure 9.22¢,
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F(C)= T T

Figure 9.23
Spectrum of C terms.
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Figure 9.24
Spectrum of M terms.

and so it is an unsigned quantity. When I =1, we say that the depth of modulation is 100 percent. If
I'=0, the depth of modulation is zero. The waveform in figure 9.20 shows a modulation index of
100 percent. (I've also set the carrier and modulator frequencies in that example so that ,,<< @,
Thus many periods of the carrier oscillator are affected by one period of the modulator, making it easier
to see the pattern.) The result we see is that the modulating signal dynamically controls the amplitude
envelope of the carrier signal.

What is happening spectrally? Recall from section 2.6.8 that

areal cosine waveform with unity
amplitude is the vector sum of two half-amplitude phasors of equal sign and opposite frequency
(see especially equation (2.52)). Since t

he C term in (9.26) is a cosine waveform, its spectrum is
a cosine spectrum with half-amplitude frequency components T, (figure 9.23).

The M term in (9.26) is the sum of the constant function 1.0 and a cosine waveform. The spec-
trum of a constant is just its magnitude at 0 Hz (see section 4.7. 1). Thus the spectrum of the M term
is a component with magnitude 1.0 at 0 Hz and a cosine spectrum with half-
components t,, (figure 9.24).

We can tie these two spectral plots together by recalling that since the M and C terms are mul-
tiplied in the time domain, their spectra are convolved in the frequency domain. The consequence
is that copies of the M components are placed around each of the components of C (figure 9.25).
Thus amplitude modulation can be thought of as frequency-shifting the spectrum of the modulat-
ing signal by the frequency of the carrier @,

Since the entire spectrum of the modulating signal is shifted up and down by @, and —@,, this
form of amplitude modulation is sometimes called double sideband modulation. In broadc

amplitude frequency

asting

applications, it is an unnecessary redundancy to have identical upper and lower sidébands, and
nd or the other, a technique known as single sideband

1

smitter,

some broadcast systems filter out one sideba

modulation, in order to reduce the amount of radio frequency spectrum required by the tran
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F(C)x F(M)=

Figure 9.25
Convolution of M and C.
Here is the equation for amplitude modulation again for reference:
£ = (1.0 +1cos ,,t)cos 1.
£ X
Duplicate of the carrier/ Amplitude of the sidebands

Comparing figure 9.24 and 9.25, note that the spectral component corresponding to the modu-
lation constant 1.0 is convolved to reside at the position of the carrier frequency *w,. The ampli-
tude of the sidebands that surround the carrier are determined by I.

9.3.1 Finding the Spectrum

‘We can derive the spectrum for amplitude modulation as follows. First, notice that the equation for
amplitude modulation has the general form: (@ + b)c, where a = 1.0, b = Icosw,t, and
¢ = cos w,t. If we expand (a + b) ¢ to ac + bc and substitute, we have

f(t) = 1.0 cosw t+Icosw,t - cos@,t.

§ . 9.27)
Product of two cosines

Note that the right-hand terms in (9.27) represent the product of two cosines. There is a handy
trigonometric identity that shows what we can do with the product of two cosines (see appendix
section A.4):

COSXCOSy = %[cos(x+y)+cos(x—y)].

Substituting cosx = Icos®,,?, and cosy = cos@,t from this trigonometric identity into (9.27),
we have

f(t) = cosw,t+ é[cos(wct + ,t) + cos(w,t — m,,1)]

I I
cos @t + Ecos(a)c +w,,)t+ Ecos(wc - m,)t.

Newe X A
Carrier Upper sideband \ Lower sideband
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Equation (9.28) shows the spectral form of amplitude modulation. The first term represents the ca
rier frequency, and the second and third represent the upper and lower sidebands, respectively. No
that the carrier frequency does not depend in any way upon @,,; all the dynamic properties of ampl
tude modulation are controlled by the frequencies and amplitudes of the sidebands, which are eac
one half of the value of 1.

The discussion has assumed that the modulating function is a cosine oscillator, and while th;
is a good assumption for analysis purposes, in practice any signal can act as the modulating func
tion. For instance, if @, is a radio frequency, and M(¥) is an announcer’s microphone signal, th
result could be an AM radio broadcast signal according to

f(#) = [1.0+1IM(t)]cos w,t. Amplitude Modulation, General Case (9.26

9.3.2 Ring Modulation

Equation (9.26) for amplitude modulation is a two-quadrant multiply, a signed quantity times a
unsigned quantity (see section 3.1.7). Since the M term is always greater than or equal to (
(because werequire 0 <7< 1.0),itisan unsigned quantity. And because the C term is an acoustica
waveform, it goes positive and negative, so it is signed.

Now, if we left out the +1.0 from the M term in equation (9.26) it would simply be Zcos ,,1
which is a signed term. The resulting equation,

f(t) = (Icosw,t)cos w,t, Ring Modulation (9.30
is a four-quadrant multiply because the M and C terms are both signed. The spectrum correspond:
ing to equation (9.30) is shown in figure 9.26.

Ring modulation is the same as amplitude modulation but without the carrier frequency presen

in the output spectrum. For a more rigorous proof of the spectral consequences of ring modulation,
see appendix section A.10. -

9.3.3 Musical Uses of Amplitude Modulation

If the frequency of the modulating oscillator is subaudio, amplitude modulation is called fremolo.
This is the effect, for instance, of the tremolo control on a Fender electric guitar amplifier.

Probably the most important use of amplitude modulation is the central role it plays in spectral
analysis and synthesis (see chapter 3). The Fourier transform essentially ring-modulates the probe
phasor and the input signal as the first step to determine the spectrum of the sound.

Fm-;—(nm e e CO,,,—»T T«@-——Com i el Ct)m—a.?y

et (), > o, =
OHz

Figure 9.26
Spectrum of ring modulation.
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Since there is not necessarily a connection between the spectrum of the carrier and the modu-
lating signal, amplitude modulation and ring modulation are really good ways to create inharmonic
spectra. Depending upon the materials and treatment, the effect can still retain enough of the orig-
inal timbre of the modulating signal to identify its source, though it sounds mutated in a strangely
dissonant but still coherent way. Some Hollywood science fiction movies from the 1950s used ring
modulation to give the aliens spooky-sounding voices.

9.4 TFrequency Modulation

Frequency modulation (FM) varies the instantaneous frequency of a signal in a periodic manner. Fig-
ure 9.27 shows a frequency-modulated sinusoid with time-varying frequency and a constant amplitude.

The frequency of a carrier sinusoid is varied by a modulator sinusoid, and the strength of the modulator’s
. effectonthe carrier frequency is called the depth of modulation. In figure 9.27 the carrier frequency is about
ten times higher than the modulating frequency, and the depth of modulation is quite strong.

The frequency of an oscillator can be varied in time by patching the output of the modulating
oscillator to the frequency input of the carrier oscillator (figure 9.28). Writing out the equation for
this patch, we have

f(t) = Asin(w,t+ Afsinw,,1), Frequency Modulation 9.31)

DL AU A DA
AP RV 11 i

Time

Q
=
£
&,

g
<

Figure 9.27
Frequency-modulated sinusoid.
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Figure 9.28
Frequency modulation patch.
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where A is amplitude, @, = 27, is the carrier frequency, and ®, = 27f, isthe modulating
frequency. The term Af, called peak frequency deviation, determines the amplitude of the mod-
ulating oscillator’s output, which controls the swing of the carrier oscillator’s frequency. If
Af = 0, equation (9.31) reduces to f(t) = Asin ., which is a sine wave at a constant fre-
qmmyHm%%nﬁM&Qammmmkd$®Mmk@mummhmaMM%aMbwmﬂm
carrier at multiples of f, .

To get a feel for this, let’s use equation (9.31) to create some sample spectra with different val-
ues of Af. Let’s set f, = 1000 Hz, and f,, = 100 Hz, and increase Af gradually, starting at 0.
When Af = 0, we have a sine wave at constant frequency with a magnitude spectrum as shown
in figure 9.29a.

As Af grows, we see the carrier decline in amplitude, and additional sidebands at fixed fre-
qhencies /. * nf,, enter the spectrum, where n is the integer order of the sidebands. It appears that
as Af increases, energy is stolen from the carrier frequency and distributed over an ever wider
number of sidebands. However, in figure 29d, where Af = 3.6, the carrier makes a forceful reap-
pearance, even as the number of sidebands continues to grow.
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Figure 9.29
Sample FM spectra, various values of frequency deviation.
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9.4.1 FM as the Combination of Fixed Frequency Components

How can it be that if we sweep a frequency continuously across a certain limited frequency range
it suddenly looks like we have a collection of fixed frequency components spread at discrete
points across a wide range of the spectrum? And what accounts for the comings and goings of the
sidebands?

It turns out that if fixed frequency sinusoids are combined at exactly the right frequencies,
phases, and amplitudes, the result is identical to a frequency-modulated sinusoid. For this to work
out, the sidebands of the same order above and below the carrier must be equal in amplitude, and
the odd-ordered lower sidebands must be 180° out of phase from the even-ordered sidebands. Addi-
tionally, the amplitudes of the various orders of sidebands must be carefully chosen. An example
will give a flavor of this.

The three sine waves shown in figure 9.30a are defined as follows:

x(t) = 0.98sin27ft, Carrier
y(t) = 0.24sin27(f+ AN, Upper sideband
z(1) = -0.24sin27(f- Af)t, Lower sideband

where f=1and Af = 1/16. Figure 9.30a shows 16 periods of x(?), just enough time for the upper
and lower sidebands to precess against each other once. These three waves are summed,
5(1) = x(2) + y(2) + z(1), to create the wave labeled s(¢) in figure 9.30b. The lighter sinusoid in

Figure 9.30
Sum of three sine waves creates frequency modulation.
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line figure 9.30b is just x(¢) shown again for reference. The curves look almost the same, but look-
ing carefully, it’s evident that they are not.

Notice that s(z) first lags behind, then advances past x(2). It looks as though the frequency of s(r)

changes over time. This is not an opticalillusion: in fact, the frequency of s(z) is changing. Summed
sinusoids with carefully chosen amplitudes and frequencies are equivalent to a single waveform
that changes frequency over time. ‘
. Notice in figure 9.30a that when the sidebands are in phase with each other, they are 90° out of
phase with respect to the carrier, and when they are out of phase with each other, they are -90° out
of phase with the carrier. The sum of the three components appears to have nearly constant ampli-
tude, but it advances and lags in phase relative to the carrier. Figure 9.27 shows this to be exactly
the behavior of a frequency-modulated sinusoid: its phase velocity advances and retreats, alter-
nately increasing and decreasing its frequency slightly.

Although the amplitude of () changes slightly, this is because we’re summing only three siny-
soids together. In order to eliminate the amplitude change, we’d need to sum an infinite number of
sinusoids at ever wider frequencies and ever smaller amplitudes according to a particular formula,

What is the formula that determines how to mix the cartier and sidebands together so that a
constant-amplitude frequency-modulated sinusoid results?

9.4.2 Return of the Bessel Functions

The amplitudes of the FM-induced sidebands are determined by Bessel functions of the first kind
and nth order. Interestingly, they are the same Bessel functions that characterize the motion of
vibrating membranes (volume 1, figure 8.21). Jo(I) determines the amplitude of the carrier, J 1)

determines the amplitude of the first upper and lower sidebands, and in general, J,(I) determines
the amplitude of the nth upper and lower sidebands.

The frequency-modulated sinusoid given in equation (9.31) can be seen to be equivalent to a set

of fixed-frequency sinusoids whose amplitudes and phases are determined by the Bessel functions,
according to the following trigonometric identity:

J(#) = Asin(a,t+ Isin w,,t)

= Asin(0+1siz,3) ©32)
= JO(I)sin9+ZJn(I)[sin(9+ nf)+ (-1)"sin(0-np)].

n=1
| If we expand the terms of the infinite summation in equation (9.32), we obtain

Ft) = Jo(Dysino
| +7(DIsin(0+ B) - sin(6- B)]
| +1,(Dsin(6+2) + sin(6- 28)] (9.33)
+7,(DIsin(8+3B)  sin(0—38)]
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The sidebands are at multipleé of the modulating frequency, odd lower sideband components are
negative, and the amplitudes of successive orders of sidebands are determined by the corresponding
orders of Bessel functions.

9.4.3 FM and Bessel Functions

We can make the following observations about equation (9.32) and about Bessel functions to help
explain what makes FM synthesis sound the way it does.

» The summation of sidebands goes on to infinity. Only when /=0 can we say that there is absolutely
no energy in any sidebands. Therefore, we can say that a frequency-modulated sinusoid has an infi-
nite spectrum, but depending upon the value of I, most of the sidebands have insignificant energy.

« The odd-ordered lower sidebands alternate sign. The term (—1)" accomplishes this sign reversal
for the odd lower sidebands.

Looking at the characteristic shape of the Bessel functions themselves,

« The Bessel functions look somewhat like damped sinusoids, since their peak amplitudes dimin-
ish gradually as the modulation index I increases. '

» Notethat J, is different from all the other Bessel orders because J,(0) = 1, whereas for all other
orders n>0, J,(0) = 0. So when =0, Jo(I), which controls the amplitude of the carrier, has
all the available energy.

= Higher-order Bessel functions start up from zero more and more gradually. This means that
higher-order sidebands have significant energy only when the modulation index / is large.

= Depending upon the index, some Bessel functions will be strongly positive, and others—even nearby
components—inight be near zero or at zero, or negative. For example, in volume 1, figure 8.22, J,(5)
is almost zero while J5(5) is near its maximum.

= Also notice in that figure and in figure 9.29d that when I> 2.5, some Bessel functions produce
a negative scaling coefficient for some values of 1.

» As Jincreases, the amplitudes of the sidebands increase and decrease in strengthina characteristic
damped sinusoidal way.

Thinking about all these points, and especially the last one, if we have a way to change the mod-
ulation index dynamically, the spectrum will change in complex ways, tracking the ups and downs
of the Bessel function curves. Altogether, the spectrum of the sound will exhibit a lively character
as we sweep I from one value to another during the time a note is sounding. This is the particular
charm of FM synthesized sounds, that they contain an interesting built-in spectral evolution, deter-
mined by the Bessel function curves, as the modulation index varies. If an important aim of good
synthesis techniques is to elicit complex yet predictable behavior from simple controls, then FM
synthesis is certainly a very good technique indeed.
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9.4.4 Modulation Index

At this point, we have two equations for frequency modulation. First there is equation (9.31):

f() =4 sin(@,t + Af sin ,,1),

which expresses the strength of the modulating oscillator in terms of peak frequency deviation Af.
Then there is equation (9.32):

Sy = Asin(a)ct +Isinw, 1),

which expresses spectra in terms of the Bessel function index 7. If I could be related to Af, we could
use the Bessel functions to predict the spectrum we would getif we employ a particular peak fre-
quency deviation. The rest of this section searches out this connection.

The expression for instantaneous phase in equation (9.32) is Ot +1sin@, 1. In graph theory,
this is an expression of the form ax + b, defining a slope, where g = @, determines the rate at
which the slope grows, x =  marks units on the x-axis, and » = [ sin @,,t is the offset. This is not
a linear slope because b is not a constant; rather it is itself a slope that changes steepness through
time sinusoidally. But it’s still a slope—just a rather bumpy one.

Here is an example. For convenience, let 8(t) = .t +Afsinw, t. If we set Af = 0, then
6(t) = w,t+ 0, whichis Just a linear ramp function that intersects the y-axis at zero. Curve (a) in
figure 9.31 shows the slope of B(¢) = 27-2 + 0 over a time interval of 4 seconds. The slope of
6(r) determines the frequency of the sinusoid in equation (9.32), which will be 2 Hz. If, as with
function (b), we set ®, = 271 8+ 0,1t would have a steeper slope, and the frequency of the sinu-
soid would go up to 8 Hz.

Now let’s make this more interesting. Setting @, = 4 Hz, @, = 2Hz, and Af = 2, we get
curving function (c)infigure 9.31, Here, the instantaneous frequency varies, or modulates, accord-
ing to the instantaneous slope of 6(t). Where the slope rises more sharply, the frequency goes up;
where itrises less sharply, the frequency goes down. The most positive part of the slope of this func-
tion will approximately double the frequency when ¢is in that region; where the slope momentarily
goes to zero (where it becomes horizontal), the frequency momentarily goes to zero.

Last, consider the slope of (d) in figure 9.31. Here, , = 6 Hz, ®,, = 2Hz, and Af = 4.8.
Notice that sometimes the slope of this curve goes negative. That means the value of 6(¢) decreases
through time in that region, and the phase velocity of the oscillator is negative. We're producing neg-
ative frequencies in that region of time. We can leverage these ruminations about 0(¢) into a precise
understanding of how modulation index J relates to peak frequency deviation Af, as follows.

If the ramp function 6(¢) defines frequency, then its derivative defines instantaneous frequency.

According to the rules laid out in section 6.1, the derivative of 6(#) with respect to time can be
expressed in terms of equation (9.32):

a9 _ iwct+i1sinwmt
dr 4t dt

o, +Iw, cosm,t.
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Figure 9.31
Linear and sinusoidally driven slope functions.

Similarly, the derivative of 8 () in terms of equation (9.31) is

de
pri W, +Afcosw,t.

Since both these expressions define the derivative of 0 (f) with respect to time 7, we may equate them:

o, +Afcosw,t = ©,+10,cos®,!.
Solving for Af yields
A = lw,, Peak Frequency Deviation (9.34)

and solving for / produces

Modulation Index (9.35)

Equations (9.34) and (9.35) allow us to relate depth of modulation, the modulation frequency,
and the index of the Bessel functions. In practical terms, if we want to use FM to create a spectrum
that has the strengths of the Bessel functions at some particular index /, and we want the compo-
nents to be separated in frequency by @, then we must choose a depth of modulation Af* according
to these formulas (F. R. Moore 1990, 318).
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9.4.5 Calculating FM Spectra

As we’ve seen, for some positive carrier frequency, as index 7 grows,
* The spectral bandwidth grows.

* The upper sidebands grow toward higher frequencies.

* The lower sidebands grow toward lower frequencies.

If the index [ grows sufficiently, sidebands below 0 Hz eventually become active, What happens
to the lower sidebands that venture below () Hz? They turn into ne

lently, we hear a phase-reversed positive frequency. Both inte
anegative frequency can be thought of simply as a phasor s
corresponding positive frequency. Alternatively,
negative frequencies back into the positive doma

gative frequencies, or equiva-
Tpretations are valid mathematically:
pinning in the opposite direction of 3
0 Hz can be thought of as a mirror that reflects
in, but with a 180° phase shift. In a nutshell,
sin(6) + sin(~0) = sin(8) - sin(9) = (.

In other words, reversing the phase of a ne
positive frequency with inverted sign (figure 9.32).
Let’s look at a realistic example FM spectrum that includes sidebands that have

ative frequency territory. Let’s set fe = f = 100Hz,
200, 300, 400, .

strayed into neg-

and /=49, The upper sidebands will be at
.. Hz, and the lower sidebands will be at 0,-100, =200, ... Hz. We can calculate

Frequency

i Figure 9.32
i Reversing the phase of a negative frequency.

300 400

Frequency

Figure 9.33
Sample FM spectrum.,
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The Bessel functions determine the relative strengths and signs of the components. The component
at 0 Hz corresponds to a positive constant offset in the waveform. If we wrap the negative frequencies
around to positive frequencies with a change of sign (ora 180° phase shift), they land on top of and sum
with any components at the same frequency. They cither add energy to or subtract energy from their pos-
itive frequency counterparts, depending upon whether their signs agree. This process is shown in
figure 9.34. The result of combining the wrapped negative frequencies is the positive-frequency spec-
trum shown in figure 9.35. Our ears don’t distinguish negative amplitude components from positive
components. If we take the magnitude of this spectrum, we obtain what we’d actuaily hear (figure 9.36).

The wrapped negative components landed on top of positive frequency components because the
ratio of carrier to modulating frequency was unity. Whenever f,,/f. = 1, the resulting spectrum
will always be harmonic. What about other possible ratios?

P40 [@/’T’, Wzgo ! I
_ (Z - ) b
Gl [T

Frequency

Figure 9.34
Components reflecting around 0 Hz.

I 100 , 300 L

0 l 200 1 400 500

Amplitude

Frequency

Figure 9.35
Resulting positive spectrum.

I P

0 100 200 300 400 500

Frequency

Figure 9.36
Magnitude FM spectrum.
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Truax (1977) suggested a harmonicity ratio, defined as the ratio of modulating frequency to car-
rier frequency, such that H = Jw/fe where H can be either an integer or a real number.

There ate two major classes of FM spectra to consider:
* If H is rational, the spectrum is harmonic

= If 4 is irrational, the spectrum is inharmonic

Rational Harmonicity The preceding example s

monicity, H= 1. As we’ve seen, this spectrum is h
fundamental.

pectrum belongs to the class of rational har-
armonic, and the carrier frequency is also the

Aninteresting subclass of Spectra consists of H=1/m, where mis a positive integer. For example,
if H=1/2, the carrier frequency is twice the modulating frequency. The spectrum is still harmonic,
but the carrier is the second component, not the first. In fact, all spectra H=1/m are barmonic, and
the carrier is positioned at component m.

The other interesting subclass is spectra where H =7, and n > 1. These spectra are also har-
monic. Here, however, some components are missing, depending upon the value of n. An impor-
tant example is H =2, where the modulating frequency is twice the carrier frequency (f,, = 2 1)
Sidebands occur at £, + 2kf,, (wherek = 0,1,2, . . -) leading to a spectrum that omits all even
harmonics, making this a convenient way of modeling the clarinet timbre. The first upper side-
band component appears at f,+2f, = 3£, and the next appears at f_ +4f, = 5 J. and so on,
Going down, the first lower sideband component appears at f —-2f, = —f, the second at
Jfe=4f, = =3f, and so on. The negative frequencies wrap around on top of the positive ones,

resulting in a spectrum with no even components. In general, for H = n, and 1 > 1, only com-
ponents kn + 1 will be present.

Irrational Harmonicity Tngeneral, if H= n/m, n and m are positive integers, the spectrum is har-

monic. But if H is irrational, the spectrum is inharmonic. In this case, the components in the spec-
trum do not fall atinteger multiples of the carrier fre
wrap around 0 Hz typically land between, not on, th
spectrum denser. Consider, for example, H = ﬁ,
carrierat f, +kf.\2, k = 0,1,2, .. ..

Again, there are two subclasses of interest. For & = 1/m, where mis a positive irrational number,
components cluster increasingly densely around the carrier as m increases, mimicking the spectra

of drums and gongs. There tends to be no clear fundamental for these timbres; hence they have no
distinct pitch.

quency. Second, the negative frequencies that
e positive frequency components, making the
which has components spreading out from the

ForH=n,n>1,andnisa positive irrational number, the components spread out increasingly
widely as n increases. This is a useful class of spectra for mimicking metal bar percussion,
where components tend to stretch wider than the integer harmonic sequence. Even though the

components are inharmonic, their relative Sparseness can still contribute a sense of pitch under
the right conditions.
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9.4.6 A Historical Note

Prior to the 1970s frequency modulation was used primarily in radio theory to characterize FM
broadcast transmission. It was the inspiration of John Chowning to wonder what such spectra
would sound like translated into the audio domain. Initially led to the phenomenon by a mistake
in a sound synthesis program he had written, Chowning (1973) went on to develop and patent an
astonishingly powerful application of FM synthesis of audio spectra that included realistic simu-
Jations of every major family of Western musical instrument tones. His work was extended in many
directions, both auditory (Schottstaedt 1977) and compositional (Truax 1977; Dashow 1980).
Chowning worked with the Yamaha corporation to develop the DX7 synthesizer, the first
mass-produced all-digital synthesizer that used audio band FM synthesis.” F. R. Moore (1990)
asserts that in terms of the numbers of units sold, the DX7 qualified at the time as the most popular
keyboard instrument.

9.47 Angle Modulation

There is some controversy as to whether what Chowning invented was an application of frequency
modulation or phase modulation (PM). In the language of communications theory, both frequency
modulation and phase modulation are kinds of angle modulation, which is defined as a sinusoid
with a time-varying frequency: f(f) = Asin 6(z).In frequency modulation, the instantaneous fre-
quency of the carrier is varied from its center frequency by an amount proportional to the instan-
taneous value of the modulating signal. In phase modulation, the phase of the carrier is controlled
by the modulating waveform. Clearly, varying the phase shift of a carrier also modulates its fre-
quency, so FM and PM are very closely related.

We know that instantaneous frequency is the derivative of phase. The instantaneous phase is
given by 6(¢) = @t + ¢(t), and the instantaneous frequency is given by

o(t) = %9(1) - coc+%¢(t).

If the frequency of f(f) is proportional to phase deviation ¢(t), we have phase modulation. If the
frequency of f(¢) is proportional to the derivative of phase deviation, —@(t), we have frequency
modulation. By these criteria, Chowning’s method is clearly frequency modulation. Not that it
matters much. Schottstaedt (2003) writes, “Of course, you can’t tell which is in use either from the
waveform or the mathematical expression of the waveform—you have to know what the modu-
lating signal was. That is a roundabout way of saying that in computer music applications there
is no essential difference between frequency and phase modulation.”

9.48 A Few of Chowning’s Examples

According to the foregoing theory of FM, we can characterize Chowning’s synthesis technique as
follows. His method was based upon a frequency modulation patch (see figure 9.28), which by
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itself produces only a static FM spectrum. To this, Chowning added dynamic amplitude contro]
using an envelope generator (see figure 9.6), and dynamic control over the modulation index 7, also
using an envelope generator.

One of Chowning’s best ideas was that by varying the modulation index 7 through time, the
Bessel functions would cause the spectrum to evolve in interesting ways, and this could be cop-
trolled to provide a sense of aliveness that marked the sound of traditional acoustical instruments.
Another idea was to exploit particular carrier/modulator frequency ratios to model the spectrum
of particular instrament families, for example, using H = 2 for clarinets and irrational ratios for
percussion.

His method consisted of artistic but reasoned choices for carrier-to-modulator frequency ratios,
based on the spectrum of the instrument he was modeling, and suitable choice of amplitude enve-
lope and modulation envelope parameters to make a convincing demonstration. He had available
a great deal of practical information about the spectral ballistics of musical instruments from the
work of Risset (1969) and Mathews at Bell Telephone Laboratories to help him.

A version of Chowning’s classic FM instrument patch appears in figure 9.37. The principal
parameters are

A, the peak amplitude
o, = 27f,, the phase velocity of the carrier oscillator, calculated from the carrier frequency f,
@,, = 27f,, the phase velocity of the modulating oscillator, calculated from the modulating

frequency f

m

Af = I/f,, the peak frequency deviation, expressed as the ratio of modulation index and modu-
lating frequency

Modulation Amplitude
Envelope Envelope

r .
| Osin() §0)

\,

Carrier

Modulating Oscillator

Oscillator

Figure 9.37
Dynamic frequency modulation patch.
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fose = ol/f,, where ois the initial or baseline frequency deviation (The idea s that fg stipulates
a minimum spectral brightness for a tone, and its maximum spectral brightness corresponds to
A+ foser)

a,» 1, and n,, attack time, release time, and sharpness of attack and release for the frequency
deviation enveloppe

a. r. and n, attack time, release time, and sharpness of attack and release for the amplitude

envelope
Here are a few of the simulations Chowning created with this setup.

FM Trumpet Risset (1969) had shown that the spectral brightness of trumpets is proportional
to their amplitude. Chowning simulated this by having the modulation envelope track the same
envelope contour as the amplitude envelope. The spectrum of a trumpet is harmonic, with all com-
ponents present, suggesting H = 1 would make a successful simulation. He made some artistic
guesses about the shape of a trumpet amplitude envelope and the value for the peak modulation
index that would sound trumpetlike, based on information from Risset, the acoustics literature, and
his own ear. The result was his first successful simulation.

FM Bell Chowning knew that the amplitude and spectral brightness of bell tones diminishes
exponentially over time, so he coupled the amplitude and modulation envelope trajectories. The
spectrum is inharmonic, suggesting an irrational ratio for H such as A2 or e. He found various
choices for the value for the peak modulation index and synthesized realistic simulations of gongs,
vibraphones, and bells.

FM Bassoon Unlike the previous examples, the spectral evolution of the bassoon attack starts
off mostly with high frequencies, then fills in lower frequencies as the tone becomes more solid.
Chowning realized he should employ H = 1/n for this timbre and make the carrier frequency
high, so that as the modulation envelope grows, the effect the ear hears is of lower-frequency com-
ponents entering after high-frequency components are already present.

FM Clarinet For the clarinet, Chowning used H =2, resulting in a spectrum containing only odd
harmonics. He adjusted the amplitude envelope to match a family of clarinet tones and adjusted
the modulation index to match its overall spectrum.

FM Voice Chowning (1989) subsequently explored the use of FM to synthesize the singing
voice. The most appropriate configuration he found was to have multiple carrier oscillators (typ-
ically three) driven by a common modulating oscillator, enabling him to construct rather arbitrary
spectra. The frequency of the common modulator is set to the fundamental of the vocal tone to be
synthesized. Each carrier frequency is set to whatever integer multiple of the modulating frequency
places it nearest the center of each of the three primary vocal formants. Because of this approach,
it is impossible to vary continuously between vowel sounds on the same pitch, or to vary the pitch
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keeping the same vowel. In spite of this limitation, the system was capable in Chowning’s mas-
terful hands of delivering compelling vocal synthesis.

Importance of Vibrato for Spectral Fusion Perhaps the most interesting result of Chowning’s
vocal synthesis system was to show the importance of vibrato (correlated perturbation of harmonic
frequency) for the psychoacoustic fusion of vocal timbres. I heard him demonstrate this once. First
he played the sound of a rich male voice synthesized with his system, singing an “ah” timbre, with
vibrato. Then he played the same timbre without vibrato. I'still recognized it as a male voice but
no longer as rich. Then he applied a bell-like exponentially decaying envelope with a sharp attack
to the timbre, again without vibrato. I thought I was hearing a bell tone; it did not sound like a voice
at all. g

Finally, he repeated the bell-like envelope with the same timbre, and again I heard a bell, but this
time, half-way through, he switched the vibrato back on. I experienced a severe case of cognitive
dissonance. I observed my perception do a surprising and quick readjustment from thinking I was
hearing bells back to hearing the rich male vocal timbre. For every listener hearing the demon-
stration, the cognitive interpretation of a vocal timbre won out over the bell the moment the vibrato
started.

He did another demonstration to a similar effect with two vocal synthesis instruments set to
“sing” the interval of a major third, but without vibrato and using the bell envelope. The timbre
started out sounding richly bell-like. The vibrato he subsequently turned on was correlated
within each voice but uncorrelated between voices. The complex bell timbre vanished, replaced
by two male voices singing. We are hard-wired, evidently, to fuse harmonics that vary accord-
ing to a correlated time function of frequency. Thisis nottoo surprising, given the survival value
of sound source separation and system identification that our ancestors must have evolved
lIong ago.

9.4.9 Critique of FM Synthesis

Chowning pioneered the application of FM to audio band spectra. The technique is extremely effi-
cient for digital sound synthesis and is flexible enough for a wide variety of compositional appli-
cations. Handled well, it can achieve astonishing effects inexpensively. But otherwise, FM
synthesis sounds like . . . well, FM synthesis. The ear is a wonderfully adaptable organ, and our
contemporary sonic culture now includes the characteristic burble of an FM synthesizer sweeping
through the Bessel functions.

Since FM synthesis is a nonlinear synthesis technique, there is no formal analysis method that
would allow us to exactly resynthesize an arbitrary timbre with FM. Using FM to model instru-
mental timbres is strictly an art.

9.410 Composing with FM

Some interesting uses of FM synthesis have a purely compositional motive. Just as composers
organize pitch space into musical scales and chords, Barry Truax suggested compositional
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methods for organizing the carrier-to-modulating frequency ratio (the ¢: m ratio). Besides the
degree of harmonicity defined as H = f,, / fe» Truax (1977) developed other ways to organize
the ¢: mratio that would help project structure in music composed using FM sounds. His meth-
ods included “predicting the precise interval between the carrier and the actual fundamental
and relating that interval to just or tempered scales, and predicting sets of c¢: m ratios pro-
ducing unique spectra and those producing exactly the same spectrum (i.e., the same set of
sidebands)”(70).

The composer James Dashow (1980) has sought ways to treat spectra as musical chords, to
convincingly combine inharmonic spectra with traditional performed musical instruments.
One of his methods was to pick out, for instance, a pair of chromatic pitches (a diad) and specify
them as anchor points in an inharmonic spectrum that would include them as components. If,
for instance, the pitches were E, and A, he would additionally specify the position of these com-
ponents in the resulting spectrum; they might be, for example, the 5th and 7th components of
a spectrum created using FM synthesis. When sounded together with, for instance, a piano play-
ing E, and A, the ear senses the spectral correspondence, and a pleasing kind of musical
unity-in-diversity results.

9.4.11 Waveshaping

Waveshaping synthesis is an improvement over FM synthesis in that arbitrary spectra can be
directly specified instead of being mandated by the shape of the Bessel function curves. In its
simplest form, it only creates harmonic spectra, but it can be extended to create inharmonic
spectra.

Waveshaping is also sometimes called nonlinear distortion synthesis. A flat mirror reflects light
linearly, but a curved mirror distorts the image; waveshaping synthesis is like reflecting a sinusoid
off a curved mirror.

We are accustomed to interpreting sin ¢ as a linear ramp function @t used to index a sine func-
tion, as in figure 9.38a. Another perspective on waveshaping is to say that it turns the tables (so
to speak) on the standard sine wave oscillator. Instead of using a ramp function to index the sine
function, it uses the sine function to index a ramp function. As shown in figure 9.38b, function W
is the identity function that linearly reflects the sinusoid indexing it. The equation for the output
waveform is

s(f) = W(sinar). (9.37)

What other possible functions are there for W? We can try out any arbitrary reflecting function
to see what happens. Figure 9.39 shows a cosine function indexing several kinds of reflecting func-
tions. In figure 9.39a, a cosine reflected by the identity function generates a cosine. In 9.39b, a
bump in the identity function creates two corresponding bumps in the cosine wave. In 9.39¢, two
complementary ramps create two complementary cosines with pointy ends. In 9.39d, a parabola
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warps the cosine wave into two periods of an inverted cosine wave. If it is not the identity function,
then the reflecting function distorts the input waveform in a characteristic way. Any such distortion
will introduce new spectral components.

Warveshaping as Function Composition Nonlinear waveshaping is an application of function
composition. A composable function is one that can be another function’s argument. For instance,
if y = f(x), and z = g(y), then

z = g(f(x)) Function Composition (9.38)

is the composition of g with f because fis the argument to g.8 For example, if y = f(x) = x + 1,
and 7 = g(y) = y? then

z=g(f(x)) = glx+1) = x2+2x+ 1L

‘We can see that waveshaping as defined by equation (9.37) is clearly based on function composition
as follows. If in equation (9.38) welet W = g, and f(x) = sinot, then g(f(x)) = W(sin wz).

But frequency modulation can also be viewed as function composition. If y = f(x) =
cx+Isinmx, and z = g(y) = asiny, then
¢ = 8(0) = glex +Isinmx) I'M as the Composition of Functions (9.39)
= asin(cx + Isin mx).

Compare equation (9.39) to equation (9.31). So FM and waveshaping are closely related syn-
thesis techniques.

Chebyshev Polynomial Reflecting Functions The Chebyshev® polynomials are a very useful
class of reflecting functions. Their use in sound synthesis was discovered, virtually simulta-
neously, by LeBrun (1979) in the United States and Arfib (1979) in France. These functions have
the following two remarkable properties when used as reflecting functions. By suitable addition
of Chebyshev polynomial functions, a reflecting function can be constructed that produces any
mixture of harmonics at any combination of strengths. Varying the amplitude of the indexing
sinusoid varies the spectral brightness of the output of the Chebyshev polynomial reflecting
function.

When the indexing sinusoid has low amplitude, its excursion covers only a small region at the
center of the reflecting function and produces relatively simple harmonic spectra. But when its
excursion covers the entire range of the reflecting function, the full harmonic spectrum coded in
the function is produced. Thus, waveshaping has a capacity (like FM) to generate sounds with
dynamic spectral evolution. But waveshaping (unlike FM) allows one to specify an arbitrary har-
monic spectrum not limited to those provided by the Bessel functions.
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In order to construct a set of known harmonic spectra, we want a set 7, of shaping functions that,
when combined, produce the desired spectrum. (We choose T because one romanized version of
Chebyshev’s name begins with that letter.) Function 7|, should produce 0 Hz, T, should produce
the fundamental, T, should produce the second partial, T, the third partial, and so on. We can
define the first two functions trivially as follows:

Foaaesn R b

Ty(x) = L.
No matter what x is, the output is 1, so this produces 0 Hz.
T,(x) = x.

This is the identity function. If x is sinusoidal, the output is identically sinusoidal.

We have T, and T, but what’s the next function in the series? What were looking for is a func-
tion that takes a sinusoidal index function like cos 6 and gives back the nth harmonic of 6. That
is, we want a function T that works like this:

T,(x) = T,(cosf) = cosnb. o : (9.40)

The solution arises in the context previously considered in ring modulation, which is the product
of two sinusoids. Recall the handy trigonometric identity that defines the product of two cosines
(see appendix section A.4.1):

cos(u+v) + cos(u—v)
2 .

CoSu - COSV =

Ifwesetu = n@,and v = 0, then this becomes

cos(nf+ )+ cos(n6—0)
2

cosnf-cosf =

_ cos[(n+1)8]+ cos[(n—1)0]
> .

There are several interesting things in this equation. Notice on the left-hand side the term cos #6.
By equation (9.40) we can rewrite this as T,(cos 8). Notice on the right-hand side the terms
cos[(n+1)6] and cos[(n —1)0]. We can rewrite these as 7, ;(cos8)and T,_;(cos 0), respec-
tively, yielding ‘

T,.1(cos 8)+T,_;(cos 6)
3 —

T,(cosB):cos 6 =

We can simplify this by letting cos 6 = x, yielding

. .

T,(x) x =
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tions that, This equation defines 7, in terms of the next function in the series, T,,, ;, and the previous function
version of in the series, T,,_;. If we solve it for 7,,,,, we have
d produce Ty (x) = 2xT(x)-T,_,(x), (9.41)
n. We can
which is a recursive formula that defines the next function in terms of the current function and the !
previous function. This is just what we need because we have exactly two solutions at hand: T, :
and T). Setting Ty = 7T, ;and T; = T,, we can use equation (9.41) to find T,,1 = T,. Then,
having found T, we can continue this process recursively to produce T, 7', and so on. The recur-
sive solutions to equation (9.41) are called Chebyshey polynomials of the first kind. i
Here’s how we derive T, using equation (9.41): |
|
) Tolx) = 1,
18 a func- | |
of 6. That Ty(x) = *7 | |
To(x) = 2x-x—-1=2x2-1, \
(©.40) Similarly we derive T, from T, and T,:
£ product T, (x) = x
0 cosines
To(x) = 2x2 -1,
T3(x) = 2x-(2x2 = 1) —x = 4x3 - 3x. ;
The reader can derive T, ending up with 8x* — 8x2 + 1. This series of polynomials gets large and
complex rather quickly. What does it have to do with sound synthesis? When we substitute
x = cos 0 in these equations,
Ty(cosO) = 1, ‘
T (cos@) = cosh, ’
Ty(cosB) = 2cos?(0)—1 ]
.cosnf. i
he terms - 2[cos(9+ Q)SCOS(G—Q)J_I i
), Tespec-

cos28+cos0—1

cos 20.

Continuing this series, we obtain

T3co860 = cos 36,

Tycos6 = cos 46, |

T5co80 = cos 50.
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Figure 9.40
Chebyshev polynomial functions.
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Figure 9.41
Dynamic waveshaping instrument patch.

Remarkably, the Chebyshey polynomial of order n produces the nth harmonic of the cosine
index function. Figure 9.40 shows the first four Chebyshev polynomial functions and the corre-
sponding output they produce when they are driven by cos 6. To achieve a composite spectrum,
all we must do is to make a weighted sum of the desired 7:

h N
f&) = 3+ 3 hT,(v), 0.42)
k=1

where £, are the weights of the 7 components.

A synthesis patch for waveshaping comparable to the patch for FM is shown infigure 9.41. Like
FM, the instrument has an amplitude envelope and a modulation envelope allowing amplitude and
spectral content to evolve through the duration of a tone, providing a heightened sense of realism.
Unlike FM, however, the spectral components are strictly harmonic multiples of the frequency of
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the index oscillator. If inharmonic spectra are desired, an optional processing step can be added,
drawn with light lines in figure 9.41, that multiplies the spectrum of the output by another sinusoid,
creating ring modulation (see section 9.3.2).

9,5 Vocal Synthesis

Synthesis is all about characterization and modeling: how to make something like something else.
We synthesize either because the synthesized model provides some expressive power we don’t oth-
erwise have, or to emulate a sound for less than the cost of the original. For musical applications,
we are typically more concerned with using synthesis to enhance expressive pOwer.

Perhaps because the voice is such a rich, expressive sound source, there are many approaches

to vocal synthesis. Most models begin by observing that the vocal tract resembles a tube about
17 cm long, made up of sections with varying diameters, connected together in series, and branch-
ing at the end toward the nasal tract (figure 9.42). At the head end of the tube, energy can escape
through both nose and mouth.

The glottis provides a driving function at the lower end of the vocal tract that produces a
broad-spectrum periodic impulse train during voiced speech. Because the glottis can adjust its fre-
quency and amplitude, we can speak with inflection and sing. Figure 9.43 shows two periods of
the waveform of the author singing the sound “ah.” The impulsive nature of the glottal source is
clearly visible.

Figure 9.42
Vocal tract.
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Spectrum of voice with formant regions.

Because some reflection occurs where the diameter of each tube section changes, each behaves
like a Helmholtz resonator (see volume 1, section 8.3.3). The maxima of this resonant structure,
called formants, are regions of the vocal frequency response that transmit energy very efficiently.
Therefore, components that fall within formant regions tend to be emphasized in the resulting spec-
trum. The mouth can change its volume, and the lips can change their shape and aperture, allowing
some formants to change their frequency and sharpness (see volume 1, equation 8.26). Other for-
mants, corresponding to the inflexible segments, remain relatively fixed. Our hearing uses the for-
mants to help identify speech. Figure 9.44 shows the spectrum of the voice signal in figure 9.43.

The spectral envelope of the formants is outlined by the top curve. Three or four formants can be
observed in this spectrum.

9.5.1 Waveform Synthesis

Perhaps the easiest way to model the spectrum of a vocal timbre is simply to extract one period
of the waveform in figure 9.43 and make it into the wavetable of an oscillator. For example, start
with the simple synthesis instrument shown in figure 9.8, but instead of a sine wave oscillator, sub-
stitute a table lookup oscillator (section 9.2.9), where the table is one period of figure 9.43. Care
must be taken to ensure that there is no discontinuity at the ends of the table, or a click is heard.
This can be accomplished by windowing the waveform with a smoothing function. The envelope
and vibrato parameters can be adjusted to taste.

This synthesis technique is used by many commercial wavetable synthesizers. Although this simple
technique can be refined a great deal and can provide realistic and interesting vocal timbres, the results
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are limited (see, for example, McNabb, 1981). First, the technique only produces vowels. Second, big
changes to the oscillator’s fundamental frequency appear to make the physical size of the speaker
change. The reason is that as the frequency shifts, the entire spectrum of the sound is shifted linearly
up and down in frequency, so the formants change as well. But our hearing equates low-pitched for-
mants with a big person and high-pitched formants with a little person. To be effective over a wide
range, many tables must be sampled from the vocalist over his or her entire range, and the nearest one
must be selected for the desired fundamental frequency. Individual tables can only be transposed by
a few semitones before the size-shifting psychoacoustic effect kicks in. We can do better.

9.5.2 Linear Prediction

Because vocal production depends upon current input (the glottal function) plus current and past
outputs (caused by reflections at the mouth and between sections of the vocal tract), the effect of
the vocal tract on the spectrum of speech can be modeled reasonably well as an IIR filtering process
(see chapter 5).

To model the vocal formants as an TIR filter, we must discover the coefficients of a filter that
matches their frequency response. We begin with a difference equation, a linear predictor, that
expresses each new sample of the speech as a linear combination of previous samples. The coef-
ficients of the linear predictor, the prediction coefficients, can be made to provide a highly accurate
model of the formants. Estimating the coefficients requires us to solve a set of linear equations and
then possibly to adjust the resulting data in order to obtain convergence to a unique and stable solu-
tion, but this will prove easier to do than it might sound. The result is a filter that matches the fre-
quency response of the vocal tract. By taking such measurements periodically, the dynamic
frequency response of the vocal tract can be characterized over time.

Having characterized the resonances of the vocal tract, the next step is to isolate the pure unfil-
tered sound of the glottis. To do so, we invert the frequency response of the vocal tract filter and
drive it with the original speech sound that we are aﬁalyzing, thereby neutralizing the filtering
effect of the vocal tract on the glottis. The unfiltered sound source is the residue signal. For vowels,
the unfiltered glottal function looks like an impulse train and sounds like a buzzer. For consonants,
the source sounds like a broadband noise.

We can resynthesize the original sound by driving the residue signal through the (uninverted)
vocal tract filter. This analysis/synthesis method, called linear predictive coding (LPC), can per-
form very high-quality speech analysis and synthesis.

Why Do Linear Prediction? LPC’s first application was in telecommunications, where the fun-
damental interest is to reproduce speech at a distance using a representation requiring the least band-
width to transmit. The original goal was to reduce as much as possible the amount of data transmitted
while maintaining intelligibility, and indeed one can achieve dramatic data reduction with LPC.10

However, we typically can’t afford to suffer any loss of quality for musical applications.!! For
music, there is generally no point in directly resynthesizing the original sound. Why not just use
the original? Therefore, LPC’s musical usefulness lies in its ability to modify the sound, preferably
in ways that are either difficult or impossible to do otherwise.
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Musically, LPC can be used to model the speaking and singing voice, woodwind instrumems,
birds, whales, violins, and any resonant sound source. Since the LPC model separates the speech
into a formant filter and a residue signal, we can alter the timing and pace of the analyzed speech of
music or modify its spectral content. We can also cross the formant filters from one signal with
any other sound to create hybrid sounds, called cross-synthesis. For instance, filtering the sound

of a flute with the prediction coefficients of a speech segment creates the illusion of a talking
flute.!2

What Does Prediction Have to Do with Filtering? If we know the position and orientatiop
of an airplane a moment ago, and also know how its controls are set, we can predict with fajr
certainty where it will be 2 moment from now. Similarly, the response of an IIR filter depends
upon its current inputs and past outputs. If we know the coefficients of a filter and its initial con-
ditions, we can predict its value in the future, But prediction implies uncertainty and therefore

estimation. For every prediction, there will possibly be an error of some magnitude against the
actual outcome,

Premise of LPC  If we can predict a signal’s behavior in the time domain, we can characterize
its behavior in the frequency domain. To predict a signal’s time domain behavior, we construct a
filter with a response that closely matches the signal’s time domain behavior. Since the Fourier
transform of the filter’s impulse response is its frequency response, the resulting filter characterizes
the resonant properties of the sighal.

To make this system work, we must have a method of constructing a filter that matches the time

domain behavior of the analysis signal. With this in mind, let’s consider Jjust the TIR portion of
equation (5.41):

N
Yy = X, —~ styn_s. IR Filter as a Linear Predictor (9.43)
s=1

(The notation Yn_s1s equivalent to y(n ~ s).) The standard interpretation of this is that the filter reads
inputsample x, and subtracts from it a weighted combination of past outputs to create the current
output y, . But we can also use this equation as a way to predict the next value of v, from the
previous N samples y,  for all integers s = 1, -+ N. In this interpretation, the term X, 1s the dif-
Jerence between the true value ¥, and the predicted value as indicated by the summation of past
outputs in equation (9.43). Isolating x,, in equation (9.43),

N
Xp = Yot styn—s’
s=1

we see that x, is the amount by which the value ¥, ditfers from what would be predicted by recent
past outputs alone. A successful predictor would have x| <<|y,| for all n because this would indi-
cate that when the linear prediction coefficients b, are applied to the past outputs, they accurately
predict future outputs. Overall, we seek the smallest error € such that the mean squared error
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N-1
£= Z x(n)2
n=0

is as small as possible, given N, the length of the signal being analyzed.

Entropy, Redundancy, and Information If an outcome is predictable based on available
information, then any additional information of the same kind is redundant. If the samples of y(n)
can be perfectly predicted from a weighted sum of the previous N samples, then any additional
samples would supply no additional information. This redundancy in the signal is what the pre-
diction coefficients are characterizing. If y(#) can be perfectly predicted, thatis, if £ = 0, then all
we need in order to regenerate it are its prediction coefficients and its initial conditions.

For example, consider the transfer function of the two-pole filter, equation (5.96). Setting
7 = y(n-x), we can directly convert this into the filter equation:

y(n) = 8(n) +2R(cos@)y(n—1)— R2y(n—2)
where 8(n) =1, n =0, else 0.

In terms of equation (9.43), the coefficients of this filter are by =2Rcos0 and b, = R2. If we set
the radius R = 1, then the effect is to move the poles of this filter onto the unit circle, If we supply
this filter with initial conditions for y(n — 1) and y(n —2)such as the values 1.0 and 0, the impulse
response of the filter will ring forever, producing a pure sinusoid at frequency 6.

These two filter coefficients can be looked upon as perfect predictors of y(n) because only the
coefficients and the initial conditions are required to predict all possible values of y(n). If we set
R <1, then y(n) will describe a sinusoid at frequency @ with an exponentially decreasing ampli-
tude. If R > 1, y(»n) will be a sinusoid at frequency 0 but with exponentially increasing amplitude.
All these functions can be perfectly predicted from the initial conditions and the two prediction
coefficients. Since they perfectly characterize ¥(n), we canreplace y(n) with the initial conditions
plus the two prediction coefficients without any loss of information, thereby considerably com-
pressing the amount of data required to characterize the signal.

Now consider a random sampled signal u (). If it is purely random, there is no way to predict
its next value from any number of previous values—in fact, this is a good definition of randomness.
There is no way we could compress this signal as we did y(n) unless we constructed a filter that
was as long as the signal. But since that would result in no data compression, what would be point?
Using the terminology of information theory, we say that u(n) has a high degree of entropy.
Similarly, since we wouldn’t be able to squeeze any additional redundancy out of the prediction
coefficients for y(n), they also have a high degree of entropy.

We can define information as the degree of entropy in a signal. We can define entropy as the number
of states required to characterize a system. !> We want the resonant properties of speech to have minimum
entropy because then the states required to characterize the resonance will be merely a handful of pre-
diction coefficients. We want the residue properties of speech to have maximum entropy because then
we have made sure that everything that can be predicted is accounted for in the prediction coefficients.
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LPCis attractive in telecommunications because most acoustical signals have high redundancy and
low entropy, allowin g for a great deal of compression, thereby lowerin g communication costs. Since
the spectrum of speech usually does not change much in 30 s, we can reduce that 30 ms of sounq
down to a handful of prediction coefficients plus the residue signal. The magnitude of the residue sig-
nal is generally rather small, and for typical speech applications it can be made to fit into 8 bits per
sample. This way, intelligible speech can be transmitted at a rate of about 5000 bits per second or less.

The reason LPC s attractive to musicians has more to do with how it divides a signal into an
all-pole filter and a residual signal. For cross-synthesis, the residual is not used and needn’tbe com-
puted because the filter will be applied to an entirely different sound.

is describing. According to the discussion of all-pole filters
in chapter 5, equation (9.43) specifies some sort of complex spectral function in the z plane whose
frequency response is defined by its N conjugate pole pairs.

We can observe whatkind of spectru

m a set of coefficients will generate by looking at their 7, trans-
form, as defined by equation (5.49).

The spectral estimate for a sampled function s, can be written

Ner o
H(z) = ¥ 52"

(9.44)
k=0

We know from equation (5.99) that the Z transform of equation (9.43) is

P(z) = “

All-Poles Model (9.45)

The difference between equations (9.44) and (9.45) is that whereas H(z) can have only zeros
of transmission, P(z) can have only poles, corresponding to infinite spectral density at their
centers. Filters with poles are good at modeling spectra that have sharp, discrete lines (Dirac delta
functions), such as the voice. It is much harder to model the spectral signatures of the voice with
filters containing only zeros, so equation (9.45) is generally used. It’s called the all-poles model.

The Wiener-Khinchin theorem (equation 4.26) states that the Fourier transform of the autocor-
relation of a function fis equal to the power spectrum of that function: F{corr(f, )} = |F(w)]
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That means we have two ways in which to describe spectra: equation (9.45) describes the spectrum
of an N-pole filter in terms of its coefficients in the z plane, and equation (4.26) describes the power
spectrum of an arbitrary signal in terms of the autocorrelation of a sampled time function. Let’s
relate these two views.

First, let’s convert the all-poles model, equation (9.45), into a power spectrum by taking the
absolute value of the square of both sides:

2

P(2)" = |—2—

N
1+3 b,2"
n=1

Next, remember from equation (4.25) that autocorrelation is written ¢, = corr( f, f)(n), and by
the Wiener-Khinchin theorem, we know that the Fourier transform of ¢, is equal to the power spec-
trum |P(z)|2 But the Fourier transform is just the Z transform evaluated on the unit circle with
z = ¢i®, That means we can express the power spectrum of ¢,as aZ transform:

N-1
®, = zd)nz_n.
n=0

Now we have a power spectrum |P(z)|? specified in terms of the Z. transform of the prediction coef-
ficients that we want to discover, and a power spectrum @,, specified in terms of the Z transform of
the autocorrelation of the signal we want to analyze. When we relate them, |P(z)] ? = ®,, we have

2 N
g |I'= 2 ([)nz_n.
N n=-N (946)
1+ zbnz_"
n=1

~ The left-hand side is the Z transform of the filter we want to design, and the right-hand side is the
7 transform of the autocorrelation of the waveform we are trying to match. The value Nis both the
number of coefficients we want to discover and the extent of the autocorrelation function we will
use to find them. Thus, N corresponds to the order of the filter we are seeking. Though we can set
N to as high as the total number of autocorrelations available, in practice we want it to be much
smaller.

The solution to equation (9.46) can be shown to have the maximum possible entropy of all possible
solutions; it is therefore called the maximum entropy method (MEM). This equation implies that there
is a linear set of relations between the autocorrelation function and the prediction coefficients.
To actually solve it requires solving a set of simultaneous equations based on the series expansions
of both sides. It can be shown that the filter coefficients satisfy the matrix equation
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The matrix form is just a notational convenience. To write out the e
taneously in standard polynomial form would require much more ink. We’d have to write

(G- D) +(y - b)) +(§, - by)+--- + (g by) =
(D1-b)+ (s by) + (@5 - b)) + - +(Oy_1 by_))

(Oy - by)+ (dy_1-by_y) F Oy g by_2)+ - +(¢y- by) =

and so on. Fortunately,

Toeplitz matrix, and some very efficient algorithms have been develo
puter (Press et al. 1988; Makhoul 1975 ; Rabiner and Schafer 1978).

Using LPC  Generally,

than the number of sharp spectral features we wish to discover. Though we can set it as high as the
number of autocorrelations available, numerical instabilities can arise. Depending on the nature of
the signal, a surplus of poles can lead to false spectral peaks. By limiting the number of poles, the
spectrum may be smoothed out somewhat, but this is generally a good thing.

The difference between the LPC analysis of a signal and that provided by the DFT is that the

LPC spectrum is continuous in frequency whereas the DFT is samp

led in frequency. One conse-
quence of this is

that the estimated LPC spectrum may have very sharp spectral features that can
be overlooked if the spectrum is not evaluated finely enough. One possible way to properly direct
the MEM algorithm is to take the DET of the signal first, then compare it to the spectral features
derived by the MEM, using the DFT as a guide as to which spectral features may be spurious.
Another problem with LPC has to do with the stability of the filters derived by the MEM. If, for
instance, a component is increasing in amplitude during an analysis frame, MEM will turn that into
. an unstable recursive filter in order to correctly model its increase in gain. The instability, if mishan-
dled by the LPC analysis/synthesis system, can result in some very loud, very unpleasant sounds that
are bad for loudspeakers and listeners alike. The MEM algorithm can be quirky, and under the right
conditions it is perfectly capable of putting poles of the filter far outside the unit circle all on its own.
If the arithmetic precision of the computer implementing the filter is not sufficient, or if there are other
subtle numerical problems, dreadful, deafening howling noises can ensue.
To avoid these problems, we have basically two choices (F. R. Moore 1990):

* Ignore the problems, and hope for the best. This becomes a losing strategy as the number of sam-
ples in the analysis frame grows because we’l] be running potentially unstable filters for a longer

(947) :
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time, increasing the risk of insufficient internal arithmetic precision in the filter. Our chances get
slimmer as we either lengthen the analysis frame size or increase the sampling rate (or both).

« Reduce the magnitude of the poles. If we reduce an unstable pole’s magnitude so it lies on the
unit circle, it goes from an exponentially increasing sinusoid to a constant-amplitude sinusoid. If
we bring it inside the unit circle along its radius, it becomes an exponentially decreasing sinusoid.
The choice we make depends upon what we want. If it seems that the sound is relatively
steady-state, maybe putting the unstable poles on the unit circle is the right thing. If we think the
unstable poles are the result of quirky MEM behavior, we can move them inside the unit circle. Or
we can kill them off altogether by moving them all the way inside to a magnitude of zero.

LPC as a Data Reduction System A drastic way to economize on transmitted information is
actually to discard the residue signal altogether. For vowels, the wave shape of the residue buzz
signal remains relatively constant, varying mostly in frequency and amplitude. For consonants, the
residue noise signal is spectrally very bright and mostly only varies in amplitude. If the source is
a vowel, we can transmit just its frequency and amplitude parameters; if it is a consonant, we just
send its amplitude. The parameter that indicates whether the synthesizer should produce noise
instead of buzz is called the voicing parameter. These parameters are transmitted along with the
prediction coefficients to the synthesizer, which first reconstructs the residue signal, then filters it.
The result sounds quite mechanical, but is surprisingly intelligible and highly efficient to imple-
ment. This is the basis of the LPC-10e algorithm described in U.S. Federal Standard 1015.14

Better-quality speech that does not require much additional transmission bandwidth uses a code-
book, which is a table of frequently encountered residue signals set up in advance. The analyzer
compares the character of the residue signal to the signals in the codebook, choosing the best match
using a least-squares fit, then transmits just the index code for this signal. The synthesizer receives
the code index, looks up the corresponding residue signal inits identical codebook, and regenerates
the signal. This is called Code Excited Linear Prediction (CELP).

The bigger the codebook, the better this approach can model the original speech. But the bigger
the codebook, the longer it takes to search for the best match. If the codebook must also take fre-
quency and amplitude information into account, it would have to be quite large. One common way
to address this is to have two codebooks, the first of which contains prototype residue signals set up
in advance. The second starts off empty and is used during operation as akind of scratch-pad memory,
containing copies of the previous residue signals delayed by an amount that matches the frequency
of the signal being encoded. This is the CELP algorithm described in U.S. Federal Standard 1016.55

A Caveat LPC succeeds best with sounds that are well modeled as all-pole resonators. The voice
is not a pure IIR process because it includes side branches—principally the nasal passages. Side
branches introduce zeros in the transfer function of the vocal tract that can’t be easily modeled with
an all-pole IR filter. Thus LPC does not model nasal sounds well. More precisely, the spectrum
of nasal sounds is not well captured in the prediction coefficients. As a consequence, the nasal
components of the spectrum remain in the residue signal. A more complicated approach (based on
equation 5.41) is required to model both poles and zeros, the pursuit of which is left to that admirable
personage, the interested reader.
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9.5.3 FOF Synthesis

FOF synthesis demonstrates a clever use of time/frequency domain symmetry to simulate spectra]
features of the singing voice and other sounds. It was developed by Rodet ( 1984).

Each formant wave function (Forme d’Onde Formantique, or FOF) consists of a windowed sinusojg
with a frequency corresponding to the center of one of the vocal formants. By adjusting the shape of
the envelope, the spectral bandwidth of each F OF can be adjusted to match the spectral shape of a vocy
formant. Although the technique can model many timbres, it excels at modeling vocal resonances.

As shown in figure 9.45, a FOFis a single momentary pulse. To create a continuous tone, 3 train
of FOFs must be generated at a rate corresponding to the desired fundamental frequency. To sim,.

ulate the principal vocal formants of the voice, between three and five trains of FOFs are generated
and summed (figure 9.46).

Amplitude

Figure 9.45
Single FOF.
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Figure 9.47
Spectrum of figure 9.46.

Figure 9.47 shows the positive frequency magnitude spectrum of the sum of the FOFs in
figure 9.46. It has a voicelike spectrum with three formants.

FOF Generation A FOF generator consists of an amplitude envelope generator similar to
equation (9.2), controlling the amplitude of a sine wave generator, similar to figure 9.6. The FOF
amplitude envelope generator determines the shape of the window applied to the sinusoid.

We have seen the effects of multiplying a sinusoid and a window function'in numerous con-
texts. Multiplying in the time domain convolves in the spectral domain, and so the shape of the
window determines the shape of the spectrum of the product. We’ve seen that windows with
sharp edges splatter energy over a broad range of frequencies, whereas smoother windows only
slightly broaden the bandwidth of the signal they are multiplied by. FOF synthesis exploits this
insight.

Amplitude Envelope Generation The amp]itudé envelope for a single FOF generator is

n<0, 0
AB, o, n) =| n<n/B, (1~ cosBn)e™™  Attack (9.48)

nzmn/p, e ™ Decay

where 7 is time in samples. The basic envelope is the exponential function e-*" with a decay rate
controlled by a. The attack duration lasts 7/ B samples. During this time, the function
0.5(1 — cos Bn) smooths the sharp discontinuity at the beginning of the exponential.

The cosine expression for the attack during n < 7/ Bis shown in figure 9.48a. The exponential
component is shown in 9.48b. Their product is shown in 9.48c. The final decay of the exponent
is shown in 9.48d, and the composite envelope is shown in 9.48e.

Figure 9.49 shows how the shape of the envelope sharpens as 7/ 3 becomes smaller with
o fixed. There is no first- or second-order discontinuity at the end of the attack. Since B determines
the impulsiveness of the attack, it primarily determines how broadly energy is distributed in the
spectrum.

Figure 9.50 shows the effect of arfora fixed setting of 8. As aincreases, the decay becomes more
rapid. Thus, ¢ also has an impact on spectrum, but not as dramatic as S




420

a)
201~ cos (Bn)]
i

b)

n<t/p e
)

%[1 —cos (Bn)] - e

d)

nzw/f e
€)

Time '

Figure 9.48

FOF envelope components.

3 /B —0 As beta increases, the. attack becomes sharper,
5 ncreasing spectral brightness.

=

Time
Figure 9.49
FOF envelope, increasing 3.
o —> o0

Q

°

£

B

g

<

Time

Figure 9.50

FOF envelope, increasing o.




Sound Synthesis

AR [ N

1006 2000 3000 4000 5000
Frequency

Figure 9.51
FOF spectral brightness as a function of 3.

Note also in both figures 9.49 and 9.50 that peak amplitude changes as a function of o and f.
In a later step, we will normalize the amplitudes.

FOF Sine Wave Generator Combining the envelope and the sinusoid generator, we have the
complete FOF tone generator:

n<0, 0

s,(B o, w ¢) = {n<a/B, (1~ cos Bt)e™"sin(wn + ¢) Forme d’Onde
Formantigue (FOF) (9.49)

n2n/B, e sin(wn+¢)

The FOF envelope function scales the sinusoid sin(@n + ¢), where @ = 27f, and fis the center
frequency of the formant being synthesized. No ﬁltering occurs here, yet each FOF generates a sin-
gle impulse with a spectrum that can mimic the frequency response of one vocal formant.

Figure 9.51 shows the magnitude spectrum for various values of 8. Large values of Bset the nar-
rowest skirts because the attack time is slowest. From narrowest to widest, the attack times cor-
respond to 7/ = 10 ms, 1 ms, and 0.1 ms, respectively, with a formant center frequency of
2500 Hz and a sampling rate of 10,000 Hz.

Cascading FOFs To simulate a voice containing three to five formants, we must run three to five
trains of FOF synthesizers in parallel (figure 9.52). Each FOF is triggered at a rate corresponding
to the fundamental frequency at times 7,. The bandwidth of each formant range is controlled by
B, and the band center is controlied by @,

Summary of FOF Synthesis FOF synthesis is computationally less challenging than filter-based
approaches to speech synthesis such as LPC. This provides a number of advantages, including
simplified arithmetic, no fear that unstable filters will make ballistic projectiles out of the loud-
speaker cones, and relatively simple calculation of control parameters. It has been used to synthesize
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Figure 9.52
FOF synthesis of multiple formants.

a great number of vocal, instrumental, and other sounds, including violins and nonresonant instru-
ments such as cymbals.

Its principal disadvantages over LPC are twofold. The FOF model does not include nonvoiced
speech, so it can’t easily be made to talk. Also, the parameter adjustments required to produce
realistic-sounding vocal timbres are quite complex, depending on the timbre of the voice being
synthesized, its vocal register, volume, the quality of vibrato, and so on. For analysis-based syn-
thesis such as LPC, the model of the vocal timbre is implicit in the analyzed voice. For FOF
synthesis, the rules governing vocal timbre must be made explicit. The rules of speech and sing-
ing have been studied extensively by Sundberg (1991), among others.

Rodet, Potard, and Barriere (1984) constructed a program called CHANT (French for song),
which embeds a set of rules for modeling general vocal synthesis with FOFs. A user of this
system supplies high-level parameters, and CHANT controls the FOF synthesis. A more ambi-
tious program called FORMES, based on the Lisp programming language, was written to
extend CHANT into a completely general compositional programming environment for FOF
synthesis.

9.5.4 Granular Synthesis

FOF synthesis creates complex timbres by combining a sequence of many simple individual sound
impulses, each having a characteristic envelope and frequency (see section 9.5.3). If we think of
these individual sound impulses as grains of sound, we can then describe FOF synthesis is a kind
of granular synthesis. This in turn suggests that there could be other forms of granular synthesis,
and indeed there are many.

The idea of granular synthesis stems from papers published by Dennis Gabor in the late 1940s.
Chapter 10 examines Gabor’s ideas in more detail, but for now suffice it to say that in general a
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grain can be literally any sound, although by convention grains are usually brief, typically on the
order of a few milliseconds in duration.

As with FOF synthesis, grains can be windowed sinusoids, or they can be prerecorded sounds,
or sounds of any sort whatsoever. Each grain can be thought of as a kind of musical note in the tech-
nical sense of that term developed in the discussion of tones, notes, and scores (see volume 1,
section 2.2), except that the grains are so brief that they are more like note fragments: hundreds
or thousands must be strung together to last long enough to make an audible sound. (Gabor 1946).16

Gabor’s Kinematical Frequency Converter In addition to setting out the theory of granular
synthesis, Gabor (1946) invented a device based on his theory that was capable of changing the
time scale of a sound (called time dilation) without changing its pitch, or vice versa. He called this
invention the Kinematical Frequency Converter.” It was based on a modification of the optical
audio track of a film projector.

Movie cameras of his day encoded audio waveform fluctuations as a continuous track on the
edge of the film. The most positive amplitude was encoded as transparent, the negative amplitude
asblack, and the intermediate amplitudes as various shades of grey. The audio track of the film was
passed over a narrow slit between an exciter lamp and a photocell. As the audio encoded on the
film moved past the slit, light intensity from the bulb was modulated by the relative transparency
of the audio track on the film. Variations in light striking the photocell produced an electrical ana-
log of the audio signal encoded on the film, which was then amplified so it could drive a loud-
speaker in the theater.

Gabor adapted this as shown in figure 9.53. He added a slotted drum that could rotate at an inde-
pendent velocity. Each slot would sweep light across the film in the window, thereby projecting
onto the photocell the segment of the audio captured in the window. To blend successive sweeps
together, Gabor progressively shaded the window so that it was transparent in the center and
opaque at its edges, using a Gaussian density distribution. Gabor reported best results when the
slots were separated by approximately one half of the window’s width.

To get a feel for how it worked, suppose the film is stationary while the wheel rotates. Each slot
sweeps over the same area of film, so we hear pulses of sound whose character is determined by
the audio encoded on the film that lies within the window. If the window is positioned over a vowel
sound such as “a”, we would hear “aaaa. ..”.

Now suppose the film travels at its normal rate while the wheel rotates at a fixed rate so that we
hear the audio as it was originally recorded. But if we now slow the film speed a bit, the pitch of
the audio remains the same, but the rate of spectral evolution of the sound that we hear is slowed.
This is because the rate at which the slots sweep across the audio in the window determines the
frequency of audio pulses, but the rate of film movement determines the rate at which new audio
material moves into the window. Hence, film speed now only determines the rate of spectral
evolution, not frequency. Holding the wheel radial velocity constant while the film moves at a vary-
ing rate accomplishes change in tempo without change in frequency.

We can use Gabor’s device together with a variable-speed audio recorder to change fre-
quency without changing tempo. Suppose we set the film speed to half the speed of the original
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Figure 9.53
Gabor’s kinematical frequency converter. From Gabor (1946, 446).

recording. Thus it will take twice as long to play the whole film, though we hear the audio at
its original frequency. If we record the output to a machine running at half speed, then play it
back at full speed, we will hear the audio transposed up an octave but lasting the length of the
original recording. In this way, Gabor was able to demonstrate for the first time independent
control of tempo and pitch.

The performance of Gabor’s machine was not ideal. The apparatus could produce strong beats
depending on the number of slots, their rate, the size of the window, and other factors. He even-
tually developed an improved version that used magnetic tape. A modern implementation of
Gabor’s technique, called the phase vocoder, is discussed in chapter 10.

Composers of Granular Synthesis The pioneer of granular synthesis techniques in music was
JTannis Xenakis. From exposure to Gabor’s work, Xenakis (1971) discovered that “all sound is con-
ceived as an assemblage of a large number of elementary grains adequately disposed in time.” He
used analog oscillators and tape-splicing techniques to assemble his composition Analogique A-B
for string orchestra and tape in 1959. Whereas Gabor used grains to modify the time/rate infor-
mation of existing audio signals, Xenakis did not start with an existing sound. Instead, he proposed
a sound grid consisting of successive screens of amplitude frequency functions describing the
distribution of sound grains at discrete moments through time. He explored musical strategies for

filling the screens with clouds of grains. He primarily used stochastic techniques (see volume I,
section 9.13) for his compositional strategies.
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Given the small size of the sound grains, the biggest challenge to their use is organizing their

distribution in time, frequency, and intensity. The possible organizing principles are seemingly
Jimitless. Rigorous exploration of the possible compositional methodolo gies had to wait until the
common availability of digital computers. Many composers have explored granular synthesis. The
composer Curtis Roads (1988) has developed the theory and practice of granular synthesis since
1974 and has continued to research techniques and compose music utilizing granular synthesis.
Truax (1988) implemented a real-time granular synthesis system in Canada in the late 1970s and
early 1980s. Many implementations of granular synthesis are now commonly available, for exam-
ple, on the World Wide Web.
Granular synthesis is reminiscent of the post-Impressionist pointillistic painting technique
exemplified by the painter Georges Seurat. Other painterly analogies include air-brushing or sten-
ciling. Granular synthesis can also be compared to collage art, in the sense that it starts with
ready-made objects (the grains) and composes them into a pattern or skein. T his suggests that the
principal dimensions of the process are the morphology of grains and their disposition in time and
frequency. The interested reader is referred to Roads (2001), whose writings on the subject are

definitive and highly recommended.

9.6 Synthesizing Concert Hall Acoustics

Since sound travels at a constant rate, a sound introduced at one end of a tube will propagate to

dio at the other end after a constant delay (figure 9.54).

lay it A delay line is a simple functional unit that can be used to simulate a sampled traveling wave
of the in an acoustical tube (figure 9.55). Weuse the notation z-V to indicate adelay of N samples through
ndent a delay line (see section 5.11).

It is natural and convenient to think of delay lines as building blocks for acoustic spaces such
beats as concert halls and amphitheaters because the effects of propagation delay in these contexts can
even- be understood as echoes and reverberation. They can also be used as building blocks for digital sim-
on of ulation of physical models of musical instruments. The treatment here prepares the way for a dis-

cussion of waveguide models of musical instruments.
c was
s con-
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_EA_B Figure 9.54
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Figure 9.55
N-sample delay line.
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9.6.1 Delay Lines

Here are two ways to implement a delay line.

subsequent bin.

Suppose there are N bins labeled Zos
sample from bin z,,_; and puts it on the
moves it to bin z v-1- He continues, advan,
When he advances the contents of bin z,

2 +++ 2y (figure 9.56). First, the courier removes the
Output stack. Next, he removes the sample in Zy_p and
cing each previous sample to reside in its subsequent bin.

» he takes a sample from the Input stack and putsitin z,,
Then he returns immediately to the last bin (zy-y) and repeats the whole procedure until all samples

have been transferred to the Output stack. The data move through a sequence of bins like a bucket
brigade moves a series of buckets from person to person.

The total delay time is the time it takes th
onds per sample, the total delay time is NT seconds.

In-place Method A simpler approach leaves the data inplace. As before, we have an Input stack,
an Output stack, and an array of storage bins. For each bin, the courier removes the oldest sample

from its bin and puts it on the Output stack, then replaces it with a sample from the Input stack,
then moves on to the next oldest bin. The courier will have

NT seconds.

Let D be a delay line of length A, i the integer index of the current bin, x the next sample from

the Input stack, and y the delayed sample headed for the Output stack. Then we can write the pro-
cedure for an in-place delay line as follows:

y = D(i) Remove sample from bin indexed by 7; send it to Output stack.
D) =x Insert next value from Input stack into the now empty bin.
i=((i+1))y Increment i, wrapping around to beginning if it goes off the end.

Return to step 1. Repeat until there is no more input.
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Figure 9.57
Digital delay line.

9.6.2 Modeling Echoes

If the delay line inputs x arrive sequentially from a microphone via an analog-to-digital converter
(ADC), and the outputs y are passed sequentially to a digital-to-analog converter (DAC) and then
to an amplifier and loudspeaker, the sound from the loudspeaker will be a copy of the input, delayed
by N samples (figure 9.57).

Acoustically, this is similar to the echo we might hear standing some distance from a large wall
in an open space. So long as the acoustical delay time is great enough to exceed the threshold of
the precedence effect (see volume 1, section 6.13.3), if we clap our hands, we will hear a single
sharp reflection called a slap echo from the wall. Figure 9.57 is an essential building block for com-
mercial delay line audio effects. Its operation is similar to the simple tape delay shown at the begin-
ning of chapter 5.

9.6.3 Modeling Traveling Waves in Air

Note the term a just before the DAC in figure 9.57. We can use it to attenuate the signal, modeling
the inverse square law of distance for a spherical wave, so that the delay line can model sound com-
ing from a distance. The proper attenuation value for a depends upon knowing the total delay time
d.If adelay line is N samples long and the sample periodis T seconds, then the delay time is d = NT
seconds. Recalling that the pressure of a spherical waveform drops off as 1/d, we can model the
attenuation of a pressure wave by setting a = 1/(NT). Since intensity drops off as 1/d?2, we can
model the attenuation of intensity by setting a = 1/(NT)2.

Air absorbs varying amounts of high-frequency energy as sound travels a unit distance, depending
mostly on humidity but also on temperature and pressure. We can simulate this effect of humidity
by adding a lowpass filter to the output of the delay line, and calibrate its attenuation of high
frequencies due to humidity conditions from tables in acoustics texts. In practice, the exact atten-
uation values are less important than the fact that increasingly distant sounds become progressively
more muffled.

9.6.4 Multipath Wave Propagation—Comb Filtering

Suppose we have a flutist and a microphone separated by some distance in an open space
(figure 9.58). There are two paths sound can take to the microphone: the direct signal path and a
reflected signal path off the floor. Suppose further that the two paths together make an isosceles
right triangle, as shown. If the length of the reflected path is 2 m, then the length of the direct
signal path will be A2 = 1.414m, and the reflected path will arrive at the microphone delayed by
(2-1414)m/c, = 0.586/331.1 = 1.76 ms. The pressure waves of the two paths meet at the




Figure 9.58
[ Multipath wave Propagation,

Figure 9.59
Composite delay lines.

a
LN

0 Iﬂ O

Figure 9.60

Comb filter.

microphone diaphragm and sum together. At some fre
diaphragm, while tothers they cance]. Thus, the intera,
causes a kind of filtering that colors
surfaces of a good recording studio
the direct one, thereby reducing sp

We could simulate the precedi

S, one for the direct signal path,
another for the reflected path (figure 9.59). But since we are generally more interested in the rel-
ative delay between paths than in the absolute delay, we simply delay the reflected Ppath by the dif-
ference betweep the delay lengths, 7 = v _ M.

Taking thig approach, we can

quencies, the wavye fronts reinforce at the
ction of these two waves at the microphone
the instrument being recorded. Most of the
§ to minimize a]] signal paths but
ath propagation.

the tone quality of

ectral coloration from multip
ng effect with two delay line

model a dua]




Chapter 9

e at the
ophone
it of the
iths but

i path,
‘he rel-
he dif-

2 9.60,
uation
acous-
¥.

ignals
ystem
ng the
signal

Sound Synthesis

path, since the direct path has zero delay. The gain s maximum and equal to a;, + a; whenawhole
number of periods fits in the L samples of the delay line because then both ends of the delay line
are exactly in phase. This occurs at frequencies @, T = k27/L, k = 0, 1,2, ... . Note that these
are harmonics of the fundamental frequency @,T = 27/L of the delay line. Thinking along the
same lines, gain is minimum and equal to |a, — a;|, where an odd number of half periods fits in
the L samples of the delay line because then the ends of the delay line are exactly out of phase. Thus,
minima occur at frequencies @, 7 = (2k+ 1)7m/L.

Returning to the flute example, the frequency corresponding to a delay of 1.76 ms is 568 Hz.
So one period of a 568 Hz sine wave fits the difference between the direct and reflected path, and
the microphone diaphragm experiences maxima at that frequency and its harmonics. It experiences
minima at one half that frequency, 284 Hz and its harmonics.

We can derive the frequency response of the comb filter as follows. By inspection, we can
express the difference equation as

y(n) = apx(n)+ayx(n—L). (9.50)

Compare equation (9.50) to the difference equation of the simple lowpass filter given in equation
(5.3). They are basically the same except that here the second term is delayed by z~* instead of
just z-1. Therefore, the transfer function is :

H(z) = ag+a;z*.
Evaluating this on the unit circle by setting z = &’ o7 we obtain the complex frequency response,
H(eioT)y = ay+age ol (9.51)

Look again at figure 5.10, which shows the transfer function of a simple lowpass filter. Essen-
tially, all that has changed here is that the exponent of z now has an extra coefficient L. Whereas
the lowpass transfer function goes counterclockwise 180° as @ — 7, this transfer function goes
through L/2 rotations. We end up with a frequency response like the one in figure 5.13, except
repeated L/2 times.

Converting equation (9.51), the complex frequency response, into the magnitude response, we have
G(@) = |H(eioT)| = |1 +eiLoT] = 2 cosé—z—“’T . (9.52)

Compare this to equation (5.28), the frequency response of a lowpass filter. Figure 9.61 shows
the comb filter spectrum for L = 7. It should now be clear how the comb filter got its name.

The comb filter spectrum has a series of L — 1 notches or nulls in the Nyquist interval where the
energy goes to zero, so we could call it a kind of multiple band reject filter. When heard, this effect
is immediately recognizable as flanging, which is a technique where a signal is summed with a
slightly delayed copy of itself. If the length of the delay varies over time, the number and position
of the nulls change, superimposing a kind of hollow swish sound over whatever material is played
through it.18
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Figure 9.63
Early side reflections.
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Figure 9.64
Recirculating comb filter.

9.6.6 Recirculating Delay Lines

for

If we feed the output of a delay line back to its input, it becomes a kind of recursive filter that,
fairly long delays, behaves like the Echoplex tape machine, described at the beginning of chapter 5.

Figure 9.64 shows the outputof a recirculating delay line. Inverted copies of sound x(n) delayed
by L samples are added back to the delay line’s input and also to the output y(n). If x(n) is the
sound of a speaker saying “ECHO”, then for a,> 0,b; >0, and by <1, y(n) will sound like
“ECHO Echo echo echo echo . . .”, mimicking the way a sound dies exponentially as it reflects
between the walls of a room. The greater the length of the delay line, the longer it takes the echo
to return, and as the feedback gain b, — 1.0, the echoes take longer and longer to die away. When
b, = 0, this degenerates into a simple gain control of ag.

Using a recirculating delay line to model room reverberation produces a rather unnatural effect,
in that each pass of the sound through the delay produces a copy that is spectrally identical to the
original, only quieter (if b, < 1). But in a natural setting, air absorption and absorption by walls
is not spectrally flat; rather, high-frequency energy is absorbed at a higher rate, so the successive
reflections are progressively more muffled. We can simulate this effect by substituting a simple
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Hall simulation System using delay lines.
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The input signal x(n) is fed both to the input of a tapped delay line and to the summed output of
the tapped delay line. The coefficient a scales the contribution of the direct signal. The lengths of
tap delays z" are chosen to match the geometry of the early reflections of the room and are scaled
respectively by coefficients a,, to account for spreading loss, air absorption, wall absorption, and so
on. The sum of the direct signal and early reflections constitutes the first 40 to 80 ms of the decay.

The direct signal and early reflections are sent both to a set of recirculating delay lines and to
an additional delay that is eventually summed into the final output. The lengths of the recirculating
delay lines can be chosen, for example, to model the distance between the three pairs of opposing
walls in a typical shoebox concert hall, and their respeétive gains can model accumulated losses
due to spreading and absorption. The output of the recirculating delays is summed, sent through
another delay, then summed with the early reflections.

The advantage of Moorer’s topology is that all the density of the first N reflections is forwarded
to the recirculating delay, which then recirculates the reflections many times, so that the buildup
of reflections is quite rapid, as is the case with better concert halls. The delays D; and D, are set
so that the first echo from the recirculating delays coincides with the end of the last echo from the
early reflections. This means that either D; or D, will be zero, depending on whether the total
delay of the early reflections is longer or shorter than the shortest recirculating delay line.

Unfortunately, a good deal of fiddling around is required to obtain good-sounding reverberation
with this setup. The delays commonly stack up in a highly composite way, even if the delay lengths
are chosen to be mutually prime, so that their prime factorizations contain no common factors.
Since the delays cascade through the system, their lengths are added together, and the sum of mul-
tiple primes is by definition no longer prime. Moorer gives example settings that sound good, but
that are heuristically derived. ,

Performance is improved greatly if lowpass filters are used in the feedback path of the recirculating
delays instead of simple gains. However, this introduces another slight problem: the later parts of the
reverberation tail become unnaturally tubby because only low-frequency energy can linger. In anatural
concert hall, low-frequency energy is lost due to admittance through the walls »® This can be overcome
by inserting a highpass filter just prior to the final output to simulate the admittance.

The reverberation system developed by Jot (1997) goes a step further, providing control over
frequency-dependent reverberation time, allowing independent control over the coloration of a rever-
berator and its decay time. It is based on a scheme for interconnecting recirculating delay lines that uses
a matrix interconnection between a set of recirculating delay lines. (Gerzon 1976). This approach also
provides faster and denser buildup of reflections than is obtainable with comb filter networks.

9.7 Physical Modeling

Physical modeling studies the causal interactions of vibrating systems that are the basis of natural
sounds. This includes the way energy travels from a performer into and through a musical instru-
ment, how its resonances affect the resulting vibration, and how these vibrations are propagated
into the surrounding air. The reverberation and ambient sound systems developed previously are
also examples of physical models.
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Karplus-strong delay lines.
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Tigure 9.68
Plucked-string synthesis.

orresponding to the length of the delay line and the sampling
rate, f = R/L.Even though the pattern is random, the ear interprets it as a steady, buzzy timbre.

Let’s try adding a multiplier b;, on the feedback path (figure 9.67¢). Setting the multiplier coef-
to 1 gives us the behavior described in the previous paragraph. Setting it to O gives us
ed with. Butif we set it somewhere in the range 0 < by <1, then
the periodic noise will be attenuated exponentially to silence as it recirculates. During the first pass
through the delay line, the samples are scaled by b;. During the second pass, they are scaled by
b%, and on pass 7, the samples are scaled by b7 . The ear hears this as a complex pitched tone with
an exponential decay, suggestive of a plucked or struck string.

A characteristic of plucked or struck string instruments that we’d like to emulate is that the
higher harmonics die away more quickly than the lower harmonics, so that the sound becomes
more muffled over time. The delay line instrument could be greatly improved if we replace the mul-
tiplier b, with a simple one-zero lowpass filter, as shown in figure 9.68.

Ifweset by = by, = 1/2, the filter is just the simple moving average lowpass filter studied in
section 5.3. As the preloaded signal recirculates through the delay line, samples pass through the
lowpass filter, and on each recirculation, remaining high-frequency energy is attenuated more rap-

e result is that the bright periodic noise we hear at the beginning

idly than low-frequency energy. Th
doesn’t just die away, it mellows through time. This lends a dynamical spectral behavior to the sim-

ulation that can be made to sound very convincingly like mandolins, banjos, harps, plucked violins,
guitars, and drums, depending upon the signal preloaded into the delay line and the kind of filtering

to which it is subjected (Karplus and Strong 1983).
The reach of the Karplus-Strong synthesis model
physics of the plucked string by Jaffe and Smith (1983
and that of F. R. Moore (1990, 282).
The dynamic spectral effects introduced by the mov
what makes this synthesis technique interesting. But some questions
this a really useful synthesis technique:

complex tone, with a frequency fc

ficient by,
the one-shot “fffft”” sound we start

was dramatically extended and related to the
). The discussion here follows their analysis

ing-average filter in the feedback path is
must be answered to make

How long does it take for a sound to die away?
Can we control the decay rate of the harmonics?
What is the effect of the phase delay of the filter on frequency?
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Ifweset b, = by = 1/2 in figure 9.68, the filter’s impulse response is

i < H)=sn1)

We studied this filter extensively in chapter 5 and know that its transfer

function is
_ 147!
H(z) = 5

Its frequency response is obtained by taking the magni
7 = glo ei2nf/R

tude of the transfer function
, Which we know from chapter 5 eva

evaluated at
luates to

G(f) = cos%c.

ISt quadrant of a cogine

Nyquist rate, R/2Hz. Itis a lowpass
high frequencies. After the signal has recirculated once around the
delay loop, its frequency content j

g1 G(f). After the second time around,
frequency content is attenuated by G( f )2, and on the nth time

> arourid, attenuation is G(f).
The phase delay of the filter is the phase of H( €'?) divided by , which we found in chapter 5
evaluates to

ZH(e'0) = _%.

y i8 constant regardless of frequenc
tal frequency Jj of the recirculating delay line as the length of

averaging filter with fespect to the sampling rate: fi =

harmonic £ as Ji = kf,. Then the rate at which harmon
Jaffe and Smith (1983) determi

Y. We can express the fundamen-
the delay plus the length of the
R/(L+0.5)Hz. Define the frequency of
ic k dies away is G( f,)n.

ned that the time in seconds required for harmonic % to be atten-
vated by 0 dB is given by
In102/20
T, = 9.53)
209 = Fle (
Equation (9 53) demonstrates that the decay time of harmonic % is related to the fundamental fre-
quency of the delay loop £, and to the i

that higher harmonics decay faster than lower ones, and also that high
overall than low-pitched tones, just as

we wanted. Happily,
of plucked and struck strin g tones. Unhappily, the ran ge of
too wide in practice and sounds unnatural. Besides, one

string instrument has a unique trade-off between high-fre

-pitched tones decay faster
these behaviors map well onto the timbre
variation from high to Jow pitchis actually
size does not fit all: each kind of plucked
quency rolloff and tone length.
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To control note duration, we must be able to shorten and lengthen notes arbitrarily. To do this,
we must modify the averaging filter characteristics. A simple way to shorten notes is to add an addi-
tional gain control p in the feedback path, so the impulse response becomes

y(n) = Px———-‘——(n) _;(n — 1), 0<p<10,

and the frequency response becomes
G(f) = poos.
(f) = peos’d

This shortens the overall decay time and also decreases the range of variance between low and high har-
monic decay. But we need also to be able to lengthen decay time, especially for high pitches. We can
do this by modifying the filter so that high frequencies are less attenuated, thus increasing overall decay
time. Jaffe and Smith setthe filter coefficientssothat by = 1-5,b, = S, where S isadecay-stretching
factor. Together with the decay-shortening factor p, the combined impulse response becomes

y(n) = pl(1-)x(n)+Sx(n—1)}
If p = land S = 0.5,thisis exactly the same filter as before. The frequency response of this filter is

G(f) = pJ(1—8)>+S2+28(1 - S)cos(2af/R). . (9:54)

If S # 0.5, the decay time will be longer than for § = 0.5. (For 0 or 1, S will not cause any decay;
when S = 0, the filter passes x(n) directly, and when S = 1,1t just passes x(n — 1) directly.)
The phase response of this modified filter is also more complicated:

tan-! =S sin ®
ZH(ei®) = (1—5;())+Scosa)_ 7

If § # 0.5, the phase delay will no longer be linear, and different frequencies will be delayed by different
amounts. Therefore, the value of S will affect the frequency of the harmonics. For S < 0.5, higher har-
monics will be progressively sharper. Happily, this allows us to mimic the stretching of upper
harmonics that occurs in, for example, pianos. For S > 0.5, harmonics will be progressively flatter.
The last practical problem has to do with fine-tuning pitch. As defined, the Karplus-Strong

model has a fundamental frequency of

R
h =105

nt at a constant sampling rate R, but since L is also
an integer, we are limited to the quantized pitches dictated by this formula. As fundamental frequency

rises, L shrinks. At very high frequencies, the frequency jump between successive integer values of
s0 large that we can’t match them to any scale. We need a way to achieve fractional delay

times through the delay loop so we can achieve arbitrary pitch at a fixed sampling rate. Jaffe and

It would be most convenient to run the instrume:

L canbe
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Smith point out that the allpass filter exactly performs this function (see section 5. 13.4). The allpass
filter only affects phase and has no effect on frequency. Jaffe and Smith cascade an allpass filter
together with the averaging filter to achieve arbitrary delay and hence arbitrary fundamenta] fre-
quency. They use a simple allpass filter with impulse response

y(n) = Cx(n)+x(n—1)~ Cy(n-1),

which has a transfer function of

The phase delay is
—sin @
C+cosw’
which, for ease of calculation, is approximately equal to a delay of

ZH(elvy = —al)tan“I

p.l=C

= 17¢ (9.55)

at low frequencies, where D is the delay through the allpass filter. The phase delay of the allpass
filter is not the same for all frequencies. Upper harmonics are slightly flattened in the range
0<C<1, and are increasingly sharpened in the range -1 <C<0. So long as [Cl < 1, we can
change C dynamically to achieve vibrato effects.

We can achieve simple overall gain control by directly scaling the output of the instrument with
an amplitude term. To emulate the piano damper pedal, for example, we could have two values for
P, avalue closer to 1.0 during note sustain, and a value closer to 0 when the damper pedal is lifted.
This would accelerate the attenuation of all energy in the delay loop, as does the damper pedal. This
technique can also helpreduce the possibility that arithmetic quantization errors in the filters would

substract this value from all samples, so the signal has no DC bias.
It would be convenient if we could specify the time 7 required for a tone at frequency fto decay
by QdB. Solving equation (9.53) for G(f), we have

G(f) = 10-2/7.

Frequency f may be a fundamental or a harmonic frequency. We compare this value to the one
produced by the unadulterated delay loop:

Goomlf) = cos nlj—;,

which is the nominal attenuation assuming p = land § = 0.5. If Gom < G, we must lengthen
the decay; if G < G, , we must shorten the decay. Lengthening requires solving equation (9.54)
for S. This can be done by arranging equation (9.54) into standard form:

(2-2cos co)S2+(2008(60)—2)S+1~G(f)2 = 0.
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Since it has the general form of ax?+ bx+c = 0,itcanbe solved by the quadratic formula. Two
solutions will result, ranging generally between 0 and 1, on either side of 0.5. Choosing the value
less than 0.5 results in harmonic stretching, and it is generally the one we’d want to mimic string
instruments.

Last, we need to tune the allpass filter parameters to achieve the correct frequency. The nominal
delay introduced by the moving-average filter is § samples. In order to calculate the length of the
delay loop L, we must first compute the desired delay Ly = R/f. The integer part of Ly can be
used to set the length of the delay loop L, and the fractional part can be used to fine-tune the pitch
with the allpass delay. We extract the integer part of Ly with the floor function, L = l_Ld _] JL+S
is less than the desired length, we subtract 1 from L and make up the difference by choosing an all
pass coefficient C that produces the desired fractional delay D. Solving equation (9.55) for filter
coefficient C in terms of D, we obtain

1-D

C=1ip

This value of C is applied to the allpass filter, and the delay length is set to L, thereby obtaining
the correct frequency.

There are many extensions to this technique. For example, to effect a softer stroke or pluck, the
noise signal can be lowpass-filtered before preloading it into the delay line. To create timbres with
only even harmonics, initialize the delay line to contain two identical periods of random values.
This doubles the frequency and the decay time. To create drumlike timbres, one can modulate the
feedback filter coefficients according to a random variable. Karplus and Strong (1983) suggest a
feedback filter with an impulse response of

S(n) = {[x(n)+x(n—l)]/2, b,
[x(m)+x(n-11/2, 1-b,

where b is a random variable in the range 0<b<l
One can also dynamically replace the contents of the delay line with successive samples of an
arbitrary sound. The delay line acts rather like the resonating sympathetic strings of asitar or viola
& amore to capture and sustain frequency content that is harmonically related to its length.
Karplus-Strong synthesis combines computational efficiency with realism and great expressive
control. But Karplus-Strong synthesis is just a special case of a much broader and even more pow-
erful synthesis model. Julius Smith (2004) generalized the Karplus-Strong model employing the

theory of digital waveguides, to which we turn next.
9.7.2 Waveguide Synthesis

Waveguides can be thought of as acoustic tubes or strings, like the ones discussed in chapter 8,
but they can be used to model any one-dimensional wave motion. (I've found it useful to
think about waveguides as water-filled troughs, for example.) The discussion here follows
Smith (2004).




Figure 9.69
Waveguides.
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Tapping a waveguide delay line.

propagation in a medium with constant characteristic impedance,
but we must also be able to model wave propagation across impedance discontinuities, such as
walls, string terminations, or cross-sectional area variation in
section 8.15) describes the reflection and transmission of ac

oustical energy across a change of
impedance (see especially figures 8.27 and 8.28). The compl

ex reflection coefficient
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Figure 9.71
Waveguide scattering junction.

determines the way energy is reflected and transmitted by the junction as a function of the imped-

ances to the left (Z,) and right (Z,) of the junction.
Combining waveguides with scattering junctions (figure 9.71) allows us to realistically emulate

the physics of many natural vibrating systems such as strings, air columns, and halls without hav-

ing to numerically integrate the wave equation.

973 Plucked-String Synthesis
a string reflects from its termiinations with a sign

We observed in figure 7.8 thata traveling wave on
deled as a waveguide for the string and a pair of

inversion. A string and its terminations can be mo
scattering junctions for the terminations. By setting the impedances of the string and terminations

to appropriate values, the scattering junctions model reflection of energy back into the string at its
terminations and also model energy transmission into the body of the instrument.

For example, let the vertical displacement of a string be u(), made up of a positive-going
(right-traveling) wave wt(r) and negative-going (left-traveling) wave u=(t). Suppose it takes
NT = cl sample times of duration T for the wave components to propagate the length of a string
of length [ at speed c. If we sample these traveling wave components at N equidistant points along
the string, we can preload the waveguide with these sampled values, and the samples will be
indexed in the waveguide as u(n), where n is the index.

Since NT is the propagation time of the string in one direction, 2 NT is the round-trip string loop
delay time. To model this, we must have two waveguides of length N, one to propagate forward,
the other to propagate back. Using the terminology of stringed instruments, let’s call one of the ter-
minations the bridge at position x = 0 along the string, and the other end the nut termination at
position x = N - 1.

If the terminations are ideally rigid and massive, and the string is ideally flexible and light-

weight, then all energy is reflected from the junctions back into the string. Note in figure 9.72

hat feed back energy from one waveguide to the other are neg-

that the signs of the coefficients ¢
ative. This is appropriate for displacement waves, velocity waves or acceleration waves, which

reflect with phase inversion. Pressure waves and force waves reflect without phase inversion.
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Figure 9.72
Simple waveguide plucked string synthesis.

Since we are modeling displacement of a string,

the terminations are inverting, as shown in
figure 9.72. If we set

Zm+1_Zm oo — ()
Ror=Rip =1 = Zyi1*Z, o+

then the scattering junctions actually don’t scatter; they reflect all energy back into the string (with
phase inversion). By choosing a value for R in the un

mitted, and the remainder is reflected back into the stri

at the junction, and the string’s vibration ceases quickly, like a banjo string or sound in a room with
heavy curtains and carpeting. If 0 << R < 1, most energy is reflected, and the vibration lasts
longer, like a low-pitched piano string or sound in a room with stone surfaces.

We can usefully define the way in which energy is reflected at a scattering junction as the reflec-
tion transfer function. We can correspondingly define the way energy is transmitted as the trans-
mission transfer function. Virtually all the energy at the nut of an unstopped guitar or violin string
is reflected, so in these cases, the reflection transfer function at the nut is R;, = 1. When a violin
string is stopped by the player’s finger, energy is lost by friction of the string against the flesh of
the finger, and so R, , is quite a bit lower; consequently, a pizzicato (plucked) violin string tone
dies away much more quickly if the string is stopped by the finger than if it is open (unstopped).
Since a stopped guitar string is terminated by a metal fret that introduces little friction, its reflection
transfer function is about the same whether jt is stopped or not. At the bridge end of stringed instru-
ments, some energy is transmitted into the body of the instrument, so Roy <Ry,.

Because the body of a stringed instrument is essentially a Helmholtz resonator, the scattering
junction at the bridge end of the string is frequency-dependent, so the value of the transmission
transfer function is complex, and its magnitude frequency response has a lower R
near resonance because at resonance the body is better able to radiate its energ

Even if a musical instrument has multiple resonances, its overall transmission transfer function
will be linear. To see this, imagine if we added an additional resonance to an instrument. For exam-
ple, the Indian rudra vina (figure 9.73) has a resonating gourd at hoth the bridge and the nut. The
effect of the two resonances on the overall spectrum of the instrument is addi

it interval 0 <R < 1, some energy is trans-
ng. If 0 < R << 1, most energy is transmitted

0,1 for frequencies
y.

tive, and overall its
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Figure 9.73
Vina.
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lasts ; Figure 9.74
Vina bridge.

eflec-
rans- ‘ transmission transfer function is linear. In ge
’ang musical instruments combine linearly.

7iolin ‘
:sh of
: tocrlle . Not all scattering junctions are linear, and again the vina is a good example.
pe‘ )- - the bridge (figure 9.74) shows thata sloping bone plate comes up to meet the string as it approaches
ction ~ the bridge. As it vibrates vertically, the end of the string slaps against this plate. The impedance

neral, the resonances introduced by the bodies of

9.7.4 Nonlinear Scattering Junctions
An enlarged view of

istru- - of this junction is nonlinear because the vertical (but not the horizontal) displacing force in the

. string is constrained by the plate, so that in this case force is not proportional to string displacement.
“ring ; The result is that high-frequency harmonic energy is injected into the string, giving it a character-
ss1.on istic sizzling sound of instruments that have this kind of plate next to the bridge (notably the vina
ieles ' and sitar), and the bandwidth increases with greater vertical excursion of the string.

ction 9.7.5 Clarinet Synthesis

The . The clarinet headpiece also is anonlinear scattering junction similar to the vina: the reed is clamped
Wits ' down against a plate in the clarinet headpiece in such a way that it closes against the headpiece
' ~ 5 in proportion to the pressure difference between the inside of the player’s mouth and the inside
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Figure 9.75
Simple clarinet reflection function.

of the clarinet bore. For waveguide synthesis, Julius Smith uses a simple signal-dependen(
nlinear reflection coefficient to terminate the bore at the headpiece.
04) qualitative analysis of the reed reflection coefficient as a fupc.
tion of mouth pressure. The formula for this figure is:

L=m(hg - h}),
1,

(9.56)

p(ht) =

form =1/ (h§ + 1). The corner point 4§ is the smallest pressure difference giving reed closure.
Embouchure and reed stiffness correspond to the choice of offset £ and slope m.

The scattering junction at the bell of the clarinet acts as a highpass filter for transmitted energy
and as a lowpass filter for reflected energy, so it is a linear junction that behaves somewhat like a
loudspeaker cross-over network.? Since the bore of a clarinet is effectively cylindrical, simple
Wwaveguides can be used to model the propagation delay in the bore. Because the main control vari-
able is air pressure at the mouth, it is conveni
junctions. The scattering junction for the be]] can also serve to model the round-trip absorption
losses of the bore, so we don’t have to calculate these separately.

Smith’s block diagram for a waveguide clarinet is given in figure 9.76. The reflection filter and
output filter are complementary lowpass and highpass, filters, respectively, with cross-over fre-
quency at around 1500 Hz for the bell. The output filter implements bell and tone-hole losses; the
reflection filter passes the complementary low-frequency energy back into the bore. Smith sug-
gests that the simplest practical implementation for the tone-hole losses is to use the bell filter set-
tings unchanged for the tone holes, as though the clarinet we
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Figure 9.76
Waveguide model of a clarinet.

Total pressure A is then used to determine how open or closed the reed should be. If the total pressure
inside the headpiece is low relative to the mouth pressure, the reed will be sucked shut, and the reflec-
oser to 1.0, because most energy will be reflected. If the

tion coefficient of the headpiece should be cl
lative to the mouth pressure, the reed will be blown open,

total pressure inside the headpiece is high re
should be closer to zero because most energy will be

and the reflection coefficient of the headpiece
transmitted into the mouth. The headpiece reflection coefficient p is therefore determined by using
total pressure A} to index the function p(h% ), given in figure 9.75, to establish the instantaneous
reflection coefficient, depending upon the instantaneous position of the reed.

The embouchure is primarily function of two variables: the position of the lips along the length

of the reed and the clamping pressure of the lips on the reed. However, a simpler view is to note
that these two parameters principally control the position of the pressure drop where the reed
9.75. In light of this, the tole of the embouchure

begins to open at the knee of the curve in figure

can be seen as a simple offset that adjusts the position of the knee, and this is how itis implemented
in figure 9.76. This one parameter can then emulate the strength and position of the bite and even
the stiffness of the reed. Other effects, such as a general brightening, can be achieved by altering

the slope of m in equation (9.56) or by making it an exponential instead of a linear function.

9.7.6 Bowed Strings

The bow divides the string into two sections, creating two nonlinear junctions with parts of the
string on either side. A simplified block diagram for the basic waveguide bowed string according
to Smith (2004) is shown in figure 9.77. When a rosined horsehair bow is drawn across a violin
string, at first the frictional force of the bow drags the string along. When the restoring force of the
string exceeds the bow frictional force, the string breaks loose and slides easily against the bow
because the function of bow friction versus string velocity is nonlinear in such a way that as bow
velocity increases, friction—which is initially quite high—drops quickly toa low point. When the
ain in the direction of the bow, itis entrained once again by the bow’s frictional
dded to the string by the bow as though by tiny plucks

gin the direction of the bow. Since the primary control
8.3.)

string moves once ag
force and dragged along. Thus energy is a
synchronized with the movement of the strin

is bow velocity, the wave

guide data are treated as velocity waves. (See section




Bow Velocity (Primary Control)

Bow Position

Figure 9,77
Block diagram of a waveguide bowed string.
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Figure 9.78
Waveguide mode] for a bowed string,

g. The waveguide at the nut end of the
string carries left-going Vg pandri ght-going v 5. n Velocity waves. The waveguide at the bridge end

of the string carries right-going Vs, » and left-going Vi velocity waves. The + indicates waves
traveling toward the bow, The fundamental pitch of the system can be adjusted by changing the

absolute lengths of the Waveguides, and the position of the bow on the string can be adjusted by
changing the relative lengths of the bow-.

ides. inuous change in bow
position and continuous change in pitch (gl
delay line samples.

consequence of the frequency
response of the body, which i

highly damped and lowpass-filtered in comparison to the bright tone of the open strings. Rather
than adding another filter to account for this, we can combine the reflection transfer function of
the nut with that of the bridge to economize calculation, as we]l as the round-trip attenuation and
dispersion of wave energy in the strings,
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Bow velocity and bow force are the control inputs from the performer that determine the quality
of vibration. On a violin, when the difference between bow velocity and string velocity is near zero,
the frictional force increases, and the bow entrains the string, increasing its energy by dragging it
along. We can simulate this as follows: energy from the left and right string segments arriving at
the bow is passed along “underneath” the bow to the other string segment; additionally, depending
on the velocities of bow and string, energy will be injected into the string or dissipated from it by

the bow.

Here’s how the bow/string ju
and left string segment output vy
and v; , through the adders on the outer rails of the bow
are sent into the bow/string junction to determine whether energy should be

netion works. In figure 9.78, the right string segment output v},
, are passed along «underneath” the bow to their respective string

segments v /string junction. Addition-
g s, n ]

ally, v, and vi,
drained or added to the string velocity.
When bow and string velocities are similar, we inject energy;

or if bow pressure is heavy, we subtract energy.

Tn order to determine the coefficient of friction between bow and string,

ential v} between the instantaneous string velocity at the bow, v, + v s and the bow velocity v,,.

Thatis, we calculate v§ = v, — (Vi + Vs, ). When bow velocity and string velocity are opposed,
v} is large, and we want the output of the bow table P(v}) to be close to zero so that the multi-
tle or no energy into the string. When bow velocity and

plication that follows the table injects lit
string velocity are similar, vX is small, and we want the output of the bow table p(v} ) to be large
thereby over-

so that the multiplication that follows the table injects more energy into the string,
coming frictional and dissipative forces in the string and sustaining vibration.

The contents of the bow table defines the way friction and bow/string differential velocity inter-

d of the act. Smith gives a simple quantitative function (figure 9.79). The flat center sect'%on of the table

1ge end . shows the bow and string stuck together with a high coefficient of friction. The skirts of the func-

- tion correspond to reduced friction when the string has broken away from the bow by exceeding

when they are opposed, we do not,

we must obtain the differ-

y ' waves . . .
R v§, the breakaway/capture differential velocity.
1ing the - ‘
sted by . :
inbow Bow and String i
§ —  Stuck Together [ I
etween ‘
At
- Breakaway/Capture —, p(VA) 1 -— Breakaway/Capture L
flected - !
sntents - . Total Reflection il
- Total Bow and String
[uency . Absorption Slipping ‘
> more ~ . Frictionlessly ;i
Rather 5 " .
. -1 —v 0 i Vi — 1 i
tion of A a A 8l
on and Figure 9.79 '

Simple string friction function.
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The bow table function is defined by

(v, i)
L+r(vy (V)Y

pOVE) =

(9.57)

where the ratio of the bow impedance Z, to the string impedance Z, is given by r(v,) =
0.252,(vs)/Z,and v, = V), =V, is the bow/string velocity differential.

The bow impedance function Zy(vy) is the coefficient of friction of the bow against the
string; that is, by the definition of impedance, bow force F b= Zp(vpa)-v A- N ominally, Z,(v A)
is constant and positive when the magnitude of the bow/string velocity differential is less than
the breakaway/capture threshold, that is, when |v,| <v§, where v§ is both the capture and
breakaway threshold. This is the static coefficient of friction. For [Va [>v§, Z,(v A Yrapidly falls
toward a relatively low dynamic coefficient of friction, and in an ideal System continues towards
azero coefficient (which is impossible in practice). With areal bow, the breakaway/capture param-
eteris not a single point but is a function of a hysteresis parameter. Hysteresis in this context means
that the transition from stuck to slipping requires slightly greater force than is required to transition
from slipping back to stuck. This simplified model ignores hysteresis.

9.7.7 Critique of Waveguides

The simple digital waveguide models of musical instruments share the advantages of physical
modeling but are computationally more efficient. Smith suggests that waveguide models require
O(1) computations per sample, whereas conventional physical models require O(N), where N
is the number of discrete modeling cells, corresponding to the number of samples in the
waveguides. For realistic tasks, Smith estimates that waveguides are on the order of 300 times more
efficient than numerical integration of the wave equation. It is possible to construct complicated
waveguide synthesis models that can be calculated in real time.

If the model is fitted to a suitable physical controller, it can be performed live. And that’s a really
good thing because, in spite of the uncanny way in which waveguide models seem to efficiently
and intuitively capture the acoustical process of musical instruments, they do not capture any of
the nuance of a skilled performer. Audition of samples generated by the simple models sound flat
and wooden, as if they were performed by an orchestrion. We should not be surprised at this, and
in all fairness, this critique must also be leveled at all the other synthesis methods discussed in this
chapter. It’s only that, with waveguide instruments, the gap between the sometimes quite high
degree of realism of the sound and the clumsiness of algorithmic control begs for better ways to
perform these models,

Fortunately, this problem is getting some attention. If a physical model is implemented in a
real-time computer system and equipped with sensors to track a performer’s gestures, it can be per-
formed like a regular instrument, with very convincing results. By changing the parameters of the
model, the controls can be used to create a wide variety of different instrumental timbres. We can
model the response of an instrument to the articulations of a performer, and we can characterize
both the ordinary and degenerate vibrational modes of an instrument. For example, a physical
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apter 9 Sound Synthesis
model of a violin can capture how excessive bow pressure produces a wolf tone, or how an over-
blown clarinet produces a multiphonic, or how a misplaced embouchure on a flute produces a
(9.57) breathy tone.
One of the aims of music synthesis articulated at the beginning of this chapter is to obtain real-
,) = ization of music without performers. But all of the synthesis techniques discussed in this chapter
are like instruments without performers, they incorporate no model of the performer/instrument
st the interaction. To obtain a human touch still requires a human. It is certajnly an area of fruitful
o(v,) research to characterize and understand human performance.
s than ‘
e and 9.8 Source Models and Receiver Models
y falls
wards Data compression is a potential application for all synthesis techniques described in this chapter.
aram- Audio compression techniques such as MPEG achieve compression by employing a psychoacous-
neans tic model that removes unhearable components. Thus, MPEG compression can be called areceiver
sition model, and by this reasoning, physical modeling is a source model. (However, MPEG-4 incorpo-
rates both source and receiver models.) Typically, control parameters of source models require far
less bandwidth than the parameters of a receiver model. The Musical Instrument Digital Interface
(MIDI) also qualifies as a source model. With MIDI, a note can be started with as little as three
7sical bytes of data and ended with only two more.
quire For a more general example, we can interpret common music notation as the control parameters
re N of a source model, namely, a standard symphony orchestra. The memory required to store the
n the notated score of Beethoven’s Ninth Symphony as a set of note parameters is small in comparison
more to the memory required to store an MPEG-encoded representation of an orchestra playing that
cated score. Recent versions of the MPEG standard, such as MPEG-4, incorporate source modeling to
allow for this kind of audio compression.
eally We gain something and lose something with source models. With receiver models, any signal
antly the ear can hear can be encoded (with varying levels of quality, depending on the encoding pro-
1y of- cess). With source coding, all one can encode are sounds for which there is a suitable model. To |
1 flat achieve realism, the model must either be performable in real time by a person, or one must incor- \
. and porate gestural knowledge of a competent performer into the model. It would be ideal if a violin :‘
t this physical model could discriminate, for example, between a Stradivarius and a Guarneri violin, for \
high example, because certainly a competent listener can do so from a high-quality MPEG encoding.
7s to Unless the model is performed in a concert space, the model must also supply an acceptable sim-
ulation of such an acoustic space.
ina Thus source models must explicitly embody information that receiver models can take for b
per- granted. Therefore, it is unlikely that source models will supplant receiver models, but they will :‘
“the supplement them where appropriate. And there are plenty of places where they are appropriate ol
can and desirable, such as to provide musicians with novel and adaptable instruments and to supply 1:1
rize composers with realistic simulations of musical instruments that they can use to preview their : “1
i

ical works.
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Summary

Linear synthesis techniques can generally be used to reproduce a sound that is identical to the orig-
inal. Nonlinear techniques generally provide no way to reproduce a sound that is identica] to an
original but may have other compelling advantages, such as being economical to calculate orinty-
itive to use.

Linear transforms add or subtract weighted basis functions of some kind, such as the sinusoids
used by the Fourier transform, Additive synthesis combines individual components to create com-
plex timbres. Subtractive synthesis removes energy from a spectrum by filtering. Linear systems
are fairly intuitive to use but can require a great deal of analysis data. Nonlinear techniques typi-
cally are much more economical, if less general.

We developed a patch system to specify synthesis algorithms and used it to create patches for
a wide variety of synthesis techniques. We first got control over pitch, duration, amplitude, ampli-
tude envelope, and vibrato, then investigated a set of synthesis techniques to control timbre. Some
sound synthesis techniques are optimized to provide the most naturalistic sound possible. Others
produce hybrid sounds, or unearthly sounds, or sounds that metamorphose.

Oscillator bank synthesis generates a weighted sum of fixed-frequency sinusoids at static har-
monics of a fundamental. Adding functions of frequency and time to ecach oscillator provides for
time-varying (dynamic) synthesis of arbitrary spectra.

We considered a set of geometrical waveforms obtainable from Fourier series, including square
wave, triangular wave, sawtooth wave, and sum of cosines.

By substituting a wavetable for continuous sinusoids, we can discretize oscillator bank synthesis
and provide efficient and highly general synthesis. The wavetable can be any discrete function, so
the resulting synthesis is completely arbitrary. We developed a table lookup oscillator.

Amplitude modulation (AM) varies the instantaneous amplitude of a signal in a periodic man-
ner. Its spectrum can be viewed as a combination of fixed frequency components. Amplitude mod-
ulation without the carrier present is called ring modulation.

Frequency modulation (FM) varies the instantaneous frequency of a signal in a periodic manner.
Its spectrum also can be viewed as a combination of fixed frequency components. The amplitudes
of the sidebands are controlled by Bessel functions. By varying depth of modulation and the fre-
quency ratio of carrier to modulating oscillator, a wide variety of musical instrument simulations
can be created.

Waveshaping synthesis is an improvement over FM synthesis in that arbitrary spectra can be
directly specified instead of being mandated by the shape of the Bessel function curves. In its sim-
plest form, it only creates harmonic spectra, but it can be extended to create inharmonic spectra.

Waveform synthesis can be used to model vowel sounds. Linear prediction can synthesize
high-quality vocal utterances and is relatively economical to calculate. However, because it relies
on recursive filtering techniques, is must be used carefully. If an outcome is predictable based on
available information, then any additional information of the same kind is redundant. We can

define information as the degree of entropy in a signal. We can define entropy as the number of
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discrete states required to characterizeas
minimum entropy because then the states require
handful of prediction coefficients. We want the resi
entropy because then we have made sure that everythin
the prediction coefficients. Most acous
ing for a great deal of
to musicians because it divides a signal into an all-
Formant wave functions in FOF synthesis consist 0
responding to the center of each vocal formant. T
match the spectral shape of a voc
excels at modeling vocal resonances. FOF synthe
ter-based approaches to speech synthesis s
Granular synthesis, like FOF synthesis,

sound. Itis an idea related to the work of Dennis Gabor that combines

“time language” in one sonic event.
Concert hall acoustics can be modeled using

filters in various combinations. Acoustically, a room is essen

system.
Physical modeling synthesis models the cau

basis of natural sounds. They capture not only th
its transient characteristics. Karplus-Strong synthesis can
models of a plucked string. It can be thought
is capable of synthesizing also winds, brasses, and bowed

Apotential application for all synthesis techn
Audio compression techniques such as
tic model that removes unhearable components.
model, and by this reasoning, physical modeling is a sour

data compression, thereby lowering communication cOsts.
pole filter and a residual signal.

£ windowed sinusoids with frequencies cor-
he bandwidth of each FOF can be adjusted to
al formant. Although the technique can model many timbres, it
sis is computationally less challenging than fil-
uch as LPC, but it can’t produce consonants.

builds up complex sounds out of individual grains of
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ystem. We want the resonant properties of speech to have
d to characterize the resonance will be merely a
due properties of speech to have maximum
g that can be predicted is accounted for in

tical signals have high redundancy and low entropy, allow-

LPC is attractive

“frequency language” and

delay lines, recirculating delay lines, and allpass
tially a multipath wave propagation

sal interactions of vibrating systems that are the
e steady-state behavior of an instrument but also

be used to create inexpensive physical

strings.

ce model.

of as a simplified form of waveguide synthesis, which

iques described in this chapter is data compression.
MPEG achiéve compression by employing a psychoacous-
Thus, MPEG compression can be called areceiver




